

Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí (PDM-BHJ)

RELATÓRIO SÍNTESE

Janeiro de 2022 – Versão 01

O presente documento consiste no **Relatório Síntese**, elaborado pela PROFILL Engenharia e Ambiente S.A., no âmbito do PLANO DIRETOR DE MACRODRENAGEM DA BACIA HIDROGRÁFICA DO RIO JUNDIAÍ, objeto do Contrato 056/2018, com a Agência das Bacias PCJ.

O presente relatório segue as orientações metodológicas dos Termos de Referência do Processo Licitatório e do Plano de Trabalho (P1), de modo a alcançar os resultados esperados.

Fevereiro de 2022.

EXPEDIENTE

COMITÊS DAS BACIAS HIDROGRÁFICAS DOS RIOS PIRACICABA, CAPIVARI E JUNDIAÍ CBH-PCJ

Luciano Santos Tavares de Almeida – Presidente Marco Antônio dos Santos – Vice-presidente André Luiz Sanchez Navarro – Secretário Executivo Caroline Túbero Bacchin – Secretária Executiva Adjunta

PCJ FEDERAL

Luciano Santos Tavares de Almeida – Presidente Sidney José da Rosa – 1ª Vice-presidente Marco Antônio dos Santos – 2ª Vice-presidente Roseli dos Santos Souza – 3ª Vice-presidente André Luiz Sanchez Navarro– Secretário Executivo

CBH-PJ 1

Sidney José da Rosa – Presidente Laene Fonseca Vilas Boas – Vice-presidente Damião Aparecido do Couto – Secretário Executivo Rodrigo Alves de Oliveira – Secretário Executivo Adjunto

COORDENAÇÃO DOS TRABALHOS

Coordenação de Projetos da Agência das Bacias PCJ:

Elaine Franco de Campos - Coordenadora de Projetos Danilo Carlos Ferreira Costa Karla Romão Lívia Maria Ongaro Modolo Mariane Rodrigues Amuy

Gerenciadora da Coordenação de Projetos: Empresa Novaes Engenharia e Construções LTDA.

Grupo Técnico de Acompanhamento:

Prefeitura da Estância de Atibaia

Daniel Borghi Filho José Ferreira Neto Dorival Hernandes

Prefeitura de Cabreúva

Glaucia Cristiane Souza Rosimeire Rabelo Timporim Andrea Manami Yoshikawa

Prefeitura de Campo Limpo Paulista

Sandra Araújo Cristiano Tadeu Santos Garcia Maria Karolina Silva Tamberlini

Prefeitura Municipal de Indaiatuba / Serviço Autônomo de Água e Esgotos (SAAE Indaiatuba)

Roberto Mário Polga Caio Antônio do Amaral Sampaio Vanessa Cristina do Carmo Kuhl

Prefeitura da Estância Turística de Itu

Guilherme Rodrigues Pereira Petri Vagner da Cruz Fernando Maciel Boff Guilherme Gazzola

Prefeitura de Itupeva

Andressa Juliana Boldrin Kleberson Renato da Silva Silvio Roberto Savio

Prefeitura de Jarinu

Mariliza Scarelli Soranz Harry Nicolau Kowaski Pedro Zago

Prefeitura de Jundiaí

Maria das Graças Martini Martim de França Silveira Ribeiro

Prefeitura Municipal de Mairiporã

José Rafael Pinheiro Tostes Maria de Lourdes Almeida Dantas José Roberto Margonari da Silva Ana Lúcia Gonçalves de Moraes e Paiva Alexandre Kise

Prefeitura da Estância Turística de Salto

Sandro Roberto Stivanelli Eduardo Donizette Jordão Káren Katiúcia de Paiva Vieira

Prefeitura de Várzea Paulista

Rafael Tamberlini João José de Lima Peterson de Ávila Alves Afonso

CONTRATANTE

FUNDAÇÃO AGÊNCIA DAS BACIAS HIDROGRÁFICAS DOS RIOS PIRACICABA, CAPIVARI E JUNDIAÍ (AGÊNCIA DAS BACIAS PCJ)

Sergio Razera – Diretor Presidente Patrícia Gobet de Aguiar Barufaldi – Diretora Técnica Ivens de Oliveira – Diretor Administrativo e Financeiro (Contrato Agência das Bacias PCJ 056/2018)

Departamento de Águas e Energia Elétrica (DAEE)

Marco Antonio Garcia de Almeida (In memoriam) Luiz Roberto Moretti (In memoriam) Thalita Benetello Andreia Daniela Modenez Carvalho

Câmara Técnica de Saneamento (CT-SA)

Marco Antonio Garcia de Almeida Thalita Benetello

CETESB

Domênico Tremarolli Renata Nogueira de Araujo Loes Lineu José Bassoi Marta Lorenti Escoura

Câmara Técnica do Plano de Bacias (CT-PB)

Roberto Mário Polga

Câmara Técnica de Uso e Conservação da Água no Meio Rural (CT-Rural)

Miguel Madalena Milinski

Câmara Técnica de Conservação e Proteção de Recursos Naturais (CT-RN)

Claudia Grabher

Petrus Bartholomeus Weel

EXPEDIENTE

Consultora Contratada - PROFILL Engenharia e Ambiente

Coordenação Geral

Eng. Civil Mauro Jungblut.

Coordenação Executiva

Eng. Civil Sidnei Gusmão Agra

Apoio à Coordenação

Eng. Hídrica Thawara Fonseca Guidolin

Equipe Técnica

Advogado Giuliano Deboni

Arquiteta e Urbanista Juliana Tonet

Arquiteto e Urbanista Klaus Jungblut

Eng. Agrônomo Lauro Paes

Eng. Ambiental Ana Helfer

Eng. Ambiental Filipe Franz Teske

Enga. Ambiental Paola Marques Kuele

Enga. Ambiental Tailana Bubolz Jeske

Enga. Ambiental Thainá Lessa Cavaltante

Eng. Cartógrafo Vinicius Melgarejo Montenegro

Eng. Civil Carlos Bortoli

Enga. Civil Cristiane Fragata dos Santos

Eng. Civil Dante Gama Larentis

Eng. Civil Henrique Kotzian

Eng. Civil Lucas Rangel Martins

Enga. Civil Mirela Miorim

Eng. Civil Nilson Teixeira

Engª. Civil Patrícia Cardoso

Eng. Civil e Agrimenssor Tadeu de Souza Oliveira

Estagiária Engª. Civil Caroline Lazzari

Geógrafa Isabel Rekowsky

Geógrafo Peterson Oliveira

Relações Públicas Karina Galdino Agra

Sociólogo Eduardo Audibert

Téc. em Hidrologia Rogério Nunes

Téc. em Edificações Júlia Campos

PREFÁCIO

Há tempos, os municípios da Bacia Hidrográfica do Rio Jundiaí vêm sofrendo com frequentes eventos de cheia. Como em diversos outros locais, as planícies sofreram um intenso processo de urbanização, com o aumento da ocupação de áreas sensíveis à ocorrência desses eventos. A diminuição das áreas vegetadas e o consequente incremento da impermeabilização do solo, decorrentes da urbanização, são fatores contribuem para uma maior frequência e intensidade de cheias e inundações.

A elaboração do Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí (PDM-BHJ), iniciada em 2018, teve como objetivos principais caracterizar as causas das inundações ocorridas nas zonas urbanas dos municípios da região e apresentar propostas de implantação de ações estruturais e não estruturais, nas áreas urbanas e rurais, relacionadas ao controle de cheias, observando os horizontes de curto (5 anos), médio (10 anos) e longo (20 anos) prazos.

Participaram do seu processo de elaboração representantes de todos os municípios com território na Bacia Hidrográfica do Rio Jundiaí, membros de Câmaras Técnicas dos Comitês PCJ e a sociedade civil.

Trata-se de uma iniciativa inovadora, especialmente pelo comprometimento em estudar questões afetas à drenagem em área tão ampla e em definir parâmetros voltados a orientar a sua gestão.

Nesse sentido, o Plano ora aprovado constitui instrumento de subsídio ao planejamento e gestão, elencando propostas de implantação de ações e contribuindo para a adoção de diretrizes gerais de caráter regional, voltadas a orientar a elaboração e a revisão de Planos Diretores Municipais de Macrodrenagem, adequados à realidade de cada município e à da unidade hidrográfica envolvida.

André Luiz Sanchez Navarro

Secretário-Executivo do CBH-PCJ e PCJ Federal

APRESENTAÇÃO

A presente publicação reúne informações acerca da Bacia Hidrográfica do Rio Jundiaí e todo o detalhamento do Plano Diretor de Macrodrenagem, elaborado com recursos financeiros oriundos da Cobrança PCJ Federal e previstos nas ações do PAP — Plano de Aplicação Plurianual 2017-2020.

Trata-se de um estudo de caráter técnico extremamente relevante realizado por meio da contratação da empresa Profill Engenharia e Ambiente S.A. no ano de 2018 com permanente acompanhamento da Coordenação de Projetos da Agência das Bacias PCJ e que agora será incluído como parte dos cadernos temáticos do Plano das Bacias PCJ 2020 a 2035.

Os municípios beneficiados são Atibaia, Cabreúva, Campo Limpo Paulista, Indaiatuba, Itu, Itupeva, Jarinu, Jundiaí, Mairiporã, Salto e Várzea Paulista. Dada a importância da Bacia Hidrográfica do Jundiaí dentro do contexto das Bacias PCJ, este plano é de fundamental relevância, não somente para os municípios envolvidos, mas para as Bacias PCJ como um todo.

Neste relatório é possível conhecer tudo sobre o plano: objetivos; caracterização da área de estudo; levantamento de informações; análise de

dados de monitoramento hidrológico; diagnóstico; prognóstico, plano de ações; detalhamento das ações estruturais e resultados das medidas estruturais recomendadas.

A partir de agora, com o plano concluído, a pactuação e comprometimento dos municípios envolvidos é essencial para a continuidade do Plano de Macrodrenagem e para a amenização dos problemas de inundações e cheias vivenciados, de forma planejada e integrada de maneira que o município a montante não empurre o problema para o município a jusante.

Fica evidente a importância dos municípios se unirem em torno de um desafio que é de todos. Desta forma, esse estudo passa a ser uma importante ferramenta para que os municípios da região possam elaborar e/ou revisar seus Planos Diretores Municipais de Drenagem e, então, alavancar recursos financeiros para o desenvolvimento das ações propostas, a fim de que efetivamente sejam minimizados os efeitos das enchentes nas cidades.

Sergio Razera

Diretor-Presidente da Fundação Agência das Bacias PCJ

SUMÁRIO

1.	INTRODUÇÃO	13
2.	OBJETIVOS	15
3.	CARACTERIZAÇÃO DA ÁREA DE ESTUDO	17
4.	LEVANTAMENTO DE INFORMAÇÕES	21
4.1.	VISITAS AOS MUNICÍPIOS	21
4.2.	LEVANTAMENTOS DE CAMPO	21
5.	ANÁLISE DE DADOS DE MONITORAMENTO HIDROLÓGICO	23
5.1.	Precipitações médias anuais e precipitações máximas	24
5.2.	Equações Intensidade-Duração-Frequência (IDF) utilizadas	25
5.3.	Dados fluviométricos	26
6.	DIAGNÓSTICO	30
6.1.	Simulação hidrológica	30
6.2.	Simulação hidrodinâmica	39
7.	PROGNÓSTICO	46
7.1.	Simulação hidrológica	46
7.2.	Resultados da simulação hidrodinâmica: TR 10 anos	46
8.	PLANO DE AÇÕES	51
8.1.	Programa para construção de reservatórios de amortecimento	de
cheia	S	53

8.2.	Programa de aumento da capacidade de condução de escoamento da					
calha	calha do Rio Jundiaí55					
8.3.	Programa de manejo de drenagem sustentável58					
8.4.	Programa de monitoramento hidráulico-hidrológico, previsão, alerta					
e resp	posta60					
8.5.	Programa de educação ambiental60					
8.6.	Programa de medidas de fiscalização e controle61					
8.7.	Programa de estruturação do setor de drenagem urbana61					
8.8.	Programa de elaboração de Planos de Drenagem Municipal62					
9.	DETALHAMENTO DAS AÇÕES ESTRUTURAIS67					
9.1.	Conjunto de Ações I - Reservatórios67					
9.2.	Conjunto de Ações II – Canalizações e bermas67					
9.3.	Conjunto de Ações III – Travessias68					
9.4.	Cronograma físico-financeiro do Conjunto de Ações propostas70					
10.	RESULTADOS DAS MEDIDAS ESTRUTURAIS RECOMENDADAS73					
11.	CONSIDERAÇÕES FINAIS76					

Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí (PDM-BHJ)

LISTA DE SIGLAS

ANA – Agência Nacional de Águas e Saneamento Básico

BHJ – Bacia Hidrográfica do Rio Jundiaí

CETESB – Companhia Ambiental do Estado de São Paulo

CN – Curve Number

CPRM – Serviço Geológico do Brasil

CT-SA – Câmara Técnica de Saneamento

DAEE-SP – Departamento de Águas e Energia Elétrica do Estado de São Paulo

EMAE – Empresa Metropolitana de Águas e Energia S.A.

GT – Grupo de Trabalho

GTA – Grupo Técnico de Acompanhamento

HEC – Hydrologic Engineering Center

HMS – Hydrologic Modeling System

IDF – Intensidade-Duração-Frequência

IGC – Instituto Geográfico e Cartográfico

MHH – Monitoramento Hidráulico-Hidrológico

MNT – Modelo Numérico do Terreno

PAP – Plano de Aplicação Plurianual

PCH – Pequena Central Hidrelétrica

PCJ – Rios Piracicaba, Capivari e Jundiaí

PDDr – Planos diretores de drenagem

PDDU – Plano Diretor de Desenvolvimento Urbano

PDM – Plano Diretor de Macrodrenagem

PDM-BHJ – Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí

PMSB – Planos Municipais de Saneamento Básico

RAS – River Analysis System

RT – Relatório Técnico

SNIRH – Sistema Nacional de Informações sobre Recursos Hídricos

TR – Tempo de Retorno

LISTA DE TABELAS

Tabela 3.1 Extensão de vias potencialmente atingidas por inundação para of
municípios posicionados ao longo da calha do Rio Jundiaí, agrupadas por tempo de
retorno19
Tabela 5.1. Informações gerais dos postos pluviométricos selecionados na Bacia
Hidrográfica do Rio Jundiaí
Tabela 5.2. Precipitações médias anuais das estações pluviométricas contidas na
BHJ24
Tabela 5.3. Vazões máximas obtidas a partir da aplicação do método de Gumbel
para os tempos de retorno de 2, 5, 10 anos
Tabela 5.4. Vazões máximas obtidas a partir da aplicação do método de Gumbel
para os tempos de retorno de 25, 50 e 100 anos
Tabela 5.5. Valores máximos de nível d'água obtidos pela distribuição de máximos
de Gumbel para a estação fluviométrica PCH Porto Góes Barramento28
Tabela 6.1. Características das sub-bacias do Rio Jundiaí
Tabela 6.2. Classes de uso do solo equivalentes para a BHJ e respectivos valores de
CN associados.
Tabela 6.3. Valores mínimos, médios e máximos do parâmetro CN obtidos nas sub
bacias da BHJ33
Tabela 6.4. Equações aplicadas para o cálculo do tempo de concentração das bacia:
hidrográficas do Rio Jundiaí35
Tabela 6.5. Valores característicos do hidrograma de projeto de 10 anos de tempo
de recorrência

Tabela 8.1. Resumo dos Programas e Ações propostos para implementação no
PDM-BHJ. 64
Tabela 9.1. Características e quantitativos dos reservatórios simulados na BHJ, para
a composição da alternativa de medidas estruturais recomendada 67
Tabela 9.2. Quantitativos das seções-tipo do canal e de bermas previamente
definidos para a alternativa de medidas estruturais proposta na BHJ68
Tabela 9.3. Quantitativo das seções-tipo do canal e bermas, por município,
previamente definidos para a alternativa de medidas estruturais proposta na BHJ.
68
Tabela 9.4. Informações das seções trapezoidais para os trechos com modificações
estruturais propostas na calha do Rio Jundiaí
Tabela 9.5. Travessias com intervenções necessárias, para a alternativa de medidas
estruturais proposta na BHJ. 69
Tabela 9.6. Custos (totais e por obra) estimados para a execução das obras de
construção de reservatórios de amortecimento de cheias na BHJ
Tabela 9.7. Cronograma físico-financeiro proposto para a execução das obras de
construção de reservatórios de amortecimento de cheias na BHJ
Tabela 9.8. Custos (totais e por obra) estimados para a execução das obras de
modificação da calha ao longo do Rio Jundiaí71
Tabela 9.9. Cronograma físico-financeiro proposto para a execução das obras de
modificação da calha ao longo do Rio Jundiaí71

LISTA DE FIGURAS

Figura 3.1. Bacia Hidrográfica do Rio Jundiaí, indicando seus municípios, sedes e
áreas urbanas
Figura 6.1. Uso do solo na Bacia Hidrográfica do Rio Jundiaí
Figura 6.2. Curve Number (CN) da Bacia Hidrográfica do Rio Jundiaí34
Figura 6.3. Aplicação de quatro equações diferentes para o cálculo do tempo de
concentração das sub-bacias do Rio Jundiaí
Figura 6.4. Vazão de pico do hidrograma de 10 anos de tempo de retorno para as
sub-bacias do Rio Jundiaí e seus respectivos coeficientes CN37
Figura 6.5. Resumo, em ordem crescente, das vazões de pico obtidas para as 32 sub-
bacias do Rio Jundiaí, em todos os cenários simulados38
Figura 6.6. Diagrama Unifilar para simulação na Bacia Hidrográfica do Rio Jundiaí
39
Figura 6.7. Mancha de inundação para o Tempo de Retorno de 10 anos
(Diagnóstico)41
Figura 6.8. Mancha de inundação para todos os Tempos de Retorno - 2, 5, 10, 25
50 e 100 anos (Diagnóstico)42
Figura 6.9. Travessias com falhas, por município43
Figura 6.10. Falhas nas travessias por tempo de retorno43
Figura 6.11. Identificação da criticidade nas Sub-bacias do Jundiaí44

Figura 7.1. Parâmetro Curve Number (CN) referente ao Prognóstico para o ano de
2040
Figura 7.2. Incremento do pico de vazão gerada no cenário de Diagnóstico e de
Prognóstico, em comparação por sub-bacia
Figura 7.3. Mancha de inundação para todos os Tempos de Retorno - 2, 5, 10, 25
50 e 100 anos (Prognóstico)
Figura 8.1. Estrutura do Plano de Ações do PDM-BHJ51
Figura 8.2. Quadro-síntese das ações propostas no conjunto de programas do Planc
de Ações
Figura 8.3. Reservatórios propostos para a Bacia Hidrográfica do Rio Jundiaí 54
Figura 8.4. Intervenções estruturais propostas para a calha do Rio Jundiaí 56
Figura 8.5. Travessias ao longo do Rio Jundiaí com intervenções estruturais
sugeridas57
Figura 8.6. Ações de drenagem sustentável no meio urbano58
Figura 8.7. Ações de drenagem sustentável no meio rural59
Figura 10.1. Mancha de inundação considerando a execução das intervenções
estruturais propostas para a BHI para o Tempo de Retorno de 10 anos

1. INTRODUÇÃO

A PROFILL Engenharia e Ambiente S.A apresenta o **Relatório Síntese**, que integra o Produto 10, décima atividade dos estudos para "Elaboração do Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí — PDM-BHJ". O trabalho foi contratado junto à PROFILL pela Fundação Agência das Bacias PCJ, responsável por seu acompanhamento e fiscalização. Os recursos financeiros investidos no trabalho são oriundos da Cobrança PCJ Federal, previstos das ações do PAP — Plano de Aplicação Plurianual 2017-2020, em específico para o exercício 2018.

O relatório foi avaliado pela Agência das Bacias PCJ e pelo Grupo Técnico de Acompanhamento - GTA, formado por técnicos das Prefeituras dos Municípios da Bacia, da Câmara Técnica de Saneamento (CT-SA), e de representantes do DAEE e CETESB. O desenvolvimento do processo de condução dos estudos conta com o acompanhamento permanente das entidades envolvidas e supracitadas, através da atuação do GT e da realização dos Seminários.

As informações com maior detalhamento estão disponíveis para consulta no Relatório Final (RT 10).

2. OBJETIVOS

O PDM BHJ tem o objetivo de reduzir progressivamente a frequência, a intensidade e a gravidade das ocorrências de enchentes, através da:

- Caracterização das causas das inundações ocorridas nas zonas urbanas dos municípios localizados na região; e
- Apresentação de propostas para implantação de ações estruturais e não estruturais para controle de cheias, nas áreas urbanas.

Algumas ações podem ser propostas em áreas rurais, de modo a minimizar os efeitos das cheias nas áreas a jusante.

Complementarmente, são objetivos secundários:

- Apresentar os levantamentos de dados e informações necessários a caracterização dos problemas relativos a cheias do Rio Jundiaí;
- Diagnosticar o processo de formação das cheias na bacia e seus impactos nos municípios;
- Prognosticar, com horizonte de 20 (vinte) anos, estes problemas;
- Viabilizar a definição de diretrizes gerais de caráter regional;
- Orientar, futuramente, a elaboração (ou revisão) de Planos
 Diretores Municipais de Macrodrenagem, adequados à
 realidade de cada município da Bacia Hidrográfica do Rio
 Jundiaí.

3. CARACTERIZAÇÃO DA ÁREA DE ESTUDO

As Bacias PCJ (UGHRI-5, na divisão paulista de bacias, Unidades de Gerenciamento de Recursos Hídricos) são formadas por três bacias hidrográficas paralelas, dos rios Piracicaba, Capivari e Jundiaí, localizadas nos estados de São Paulo e, também, Minas Gerais. Dentre elas, este projeto tem por área de atuação a Bacia Hidrográfica do Rio Jundiaí (BHJ), com 1.114 km², e seus municípios.

Ao todo, 11 municípios integram a BHJ, total ou parcialmente, são eles: Atibaia, Cabreúva, Campo Limpo Paulista, Indaiatuba, Itu, Itupeva, Jarinu, Jundiaí, Mairiporã, Salto e Várzea Paulista. Conforme indicação dos Termos de Referência, a área de estudo compreende as porções municipais que afluem para o Rio Jundiaí, ou seja, o território da Bacia Hidrográfica do Rio Jundiaí.

Na Figura 3.1, a seguir, está apresentada a disposição destes municípios na bacia hidrográfica. A figura também apresenta a localização das sedes urbanas e a extensão das manchas urbanas na BHJ, conforme dados do Mapa de Uso do Solo do Plano das Bacias PCJ (PROFILL/RHAMA, 2018a). A análise do mapa de uso do solo aponta que aproximadamente 22% da bacia do Rio Jundiaí corresponde a áreas urbanizadas, e os 78%

restantes são distribuídos entre áreas de campos, lavouras, mata nativa, corpos d'água e outros usos.

O Rio Jundiaí tem, aproximadamente, 123 km de extensão, sendo um afluente da margem direita do Rio Tietê. Seus principais afluentes são o Rio Jundiaí-Mirim e o Ribeirão Piraí. As nascentes do Rio Jundiaí estão localizadas a 1.000 m de altitude, na Serra da Pedra Vermelha, no município de Mairiporã. O Rio Jundiaí segue seu curso, paralelamente ao Rio Capivari, até desaguar no Rio Tietê, no município de Salto, no reservatório da Pequena Central Hidrelétrica Porto Góes.

Do ponto de vista de seu regime de vazões, a Bacia Hidrográfica do Rio Jundiaí recebe uma transposição de 1,2 m³/s em épocas de estiagem, provenientes do Rio Atibaia, através do Rio Jundiaí-Mirim, com o objetivo de reforçar o sistema de abastecimento do município de Jundiaí.

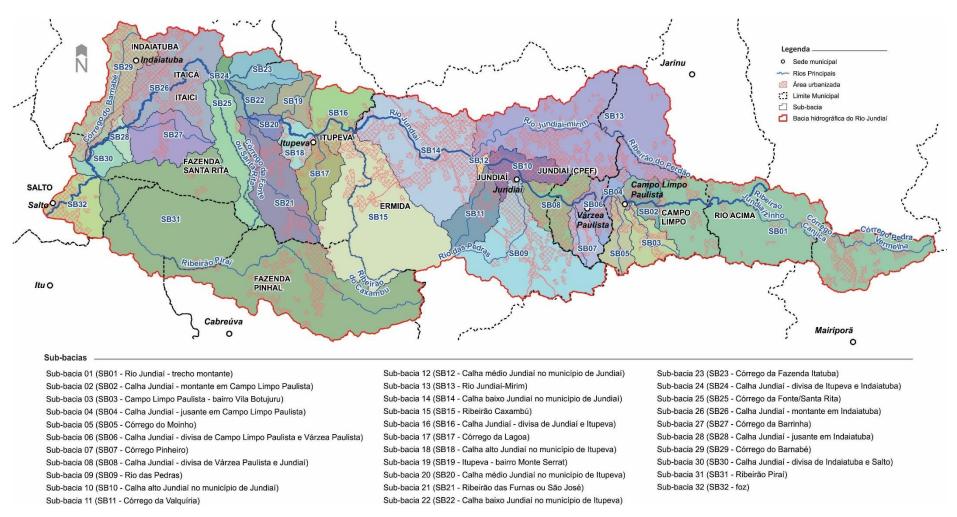


Figura 3.1. Bacia Hidrográfica do Rio Jundiaí, indicando seus municípios, sedes e áreas urbanas.

Destaca-se que os municípios de Campo Limpo Paulista, Várzea Paulista, Jundiaí, Itupeva, Indaiatuba e Salto tem suas áreas urbanas localizadas ao longo da calha do Rio Jundiaí. Uma informação importante para a elaboração do PDM-BHJ é caracterizar a ocorrência das cheias na Bacia Hidrográfica do Rio Jundiaí. Como será detalhado adiante no presente relatório, a partir de dados obtidos no Diagnóstico da BHJ, a Tabela 3.1 indica que 237 km de vias podem ser atingidos quando considerada a mancha de inundação para o maior tempo de retorno simulado, de 100 anos. Por outro lado, em uma mancha de menor tempo de retorno, como por exemplo 25 anos, estão localizados pouco mais de 163 km de vias atingidas pela inundação.

Também foi realizada uma estimativa de edificações localizadas nas manchas de inundação simuladas neste estudo. Neste processo, observaram-se edificações destinadas aos mais variados usos, como comercial, industrial e residencial.

No total, para mancha de inundação mais abrangente (100 anos), foram identificadas 13.226 unidades em áreas em risco de inundação, sendo que a maior parte delas (63,4%) está localizada no município de Jundiaí. Já na mancha modelada para um tempo de retorno mais recorrente (10 anos) estão localizadas 6.149 unidades em áreas potencialmente inundáveis.

Tabela 3.1. - Extensão de vias potencialmente atingidas por inundação para os municípios posicionados ao longo da calha do Rio Jundiaí, agrupadas por tempo de retorno.

Tempo de retorno	Município	Extensão de vias atingidas (km)	
	Campo Limpo Paulista	9,4	
	Indaiatuba	11,4	
10 anos	Itupeva	18,1	
10 anos	Jundiaí	61,2	
	Salto	10,1	
	Várzea Paulista	11,7	
	Campo Limpo Paulista	10,8	
	Indaiatuba	14,6	
25 anos	Itupeva	31,7	
25 dilos	Jundiaí	78,9	
	Salto	12,1	
	Várzea Paulista	15,2	
	Campo Limpo Paulista	12,7	
	Indaiatuba	16,8	
50 anos	Itupeva	34,5	
30 allos	Jundiaí	112,6	
	Salto	13,9	
	Várzea Paulista	16,1	
	Campo Limpo Paulista	15,1	
	Indaiatuba	19,7	
100 anos	Itupeva	39,9	
100 01103	Jundiaí	128,9	
	Salto	16,5	
	Várzea Paulista	17,4	

Fonte: simulação hidrodinâmica do cenário de Diagnóstico para a BHJ.

4. LEVANTAMENTO DE INFORMAÇÕES

4.1. VISITAS AOS MUNICÍPIOS

A atividade de levantamento de informações juntamente aos municípios teve início com uma solicitação de visita da equipe da PROFILL através de comunicação eletrônica (via e-mail) aos 11 municípios integrantes da bacia.

Foram realizadas duas visitas em cada um dos municípios, onde foram coletados dados e percorridos alguns pontos notáveis da macrodrenagem de cada um dos municípios da BHJ. Todas as informações foram inseridas no capítulo de Diagnóstico do Relatório Final (RT 10).

Adicionalmente, também foram consultados os Planos Municipais de Saneamento Básico (PMSB) dos 11 municípios inseridos, integralmente ou parcialmente, na Bacia Hidrográfica do Rio Jundiaí.

4.2. LEVANTAMENTOS DE CAMPO

Este capítulo apresenta o quantitativo dos levantamentos de campo realizados na Bacia Hidrográfica do Rio Jundiaí, bem como os resultados totais destes levantamentos, separados em três (03) categorias:

- Perfil topobatimétrico das seções de controle:
 - 300 seções de controle levantadas ao longo do Rio Jundiaí.
- Cadastramento das travessias da calha do Rio Jundiaí:
 - o 68 travessias levantadas ao longo do Rio Jundiaí.
- Desenho das confluências identificadas afluentes à calha do Rio Jundiaí:
 - o 122 confluências levantadas ao longo do Rio Jundiaí.

A metodologia adotada na execução dos levantamentos e os resultados completos destes estão apresentados de forma detalhada no capítulo de Levantamentos de Campo do Relatório Final (RT 10).

5. ANÁLISE DE DADOS DE MONITORAMENTO HIDROLÓGICO

A análise dos dados de monitoramento hidrológico foi realizada a partir dos dados pluviométricos e fluviométricos obtidos na Bacia Hidrográfica do Rio Jundiaí.

Além da coleta, compilação e processamento dos dados, são apresentadas a localização dos postos selecionados para o estudo, com análise do seu contexto na bacia e os ajustes de equações Intensidade-Duração-Frequência (IDF), realizados para algumas estações pluviométricas na BHJ.

As informações dos postos pluviométricos utilizadas foram obtidas através de consulta ao portal *HidroWeb*, integrante do Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH) da Agência Nacional de Águas e Saneamento Básico (ANA, 2019).

Adicionalmente à coleta, compilação e processamento dos dados, são apresentadas a localização dos postos selecionados para o estudo, e analisado seu contexto na bacia. Posteriormente, é apresentado o ajuste da distribuição de extremos de Gumbel realizado para uma estação fluviométrica, necessário para a simulação hidrodinâmica realizada na bacia.

Tabela 5.1. Informações gerais dos postos pluviométricos selecionados na Bacia Hidrográfica do Rio Jundiaí.

Código ANA	Código DAEE	Nome	Município	Responsável	Altitude (m)	Porcentagem de dados (%)
02346013	E3-025	Jundiaí (CPEF)	Jundiaí	DAEE-SP	710,0	93,8
02346014	E3-053	Ermida	Jundiaí	DAEE-SP	730,0	75,1
02346015	E3-230R	Rio Acima	Atibaia	DAEE-SP	800,0	99,6
02346097	-	Jundiaí	Jundiaí	ANA	700,0	93,5
02347007	E4-015	Indaiatuba	Indaiatuba	DAEE-SP	630,0	98,1
02347011 E4-124 Fazenda Santa Rita		Indaiatuba	DAEE-SP	700,0	99,8	
02347020	E4-030R	Fazenda Pinhal	Cabreúva	DAEE-SP	750,0	99,7
02347055	-	Itaici	Indaiatuba	ANA	570,0	96,6
02347057	-	Itupeva	Itupeva	ANA	659,0	96,0
02347145	E4-127	Salto	Salto	DAEE-SP	500,0	90,6

5.1. Precipitações médias anuais e precipitações máximas

A análise das precipitações médias anuais foi realizada para os postos pluviométricos, a partir dos obtidos no portal *HidroWeb* da Agência Nacional de Águas e Saneamento Básico, que disponibiliza as séries de precipitações com dados diários (ANA, 2019). Para cada estação contida na Bacia Hidrográfica do Rio Jundiaí, verificou-se o período com informações disponíveis, visando obter séries longas e representativas do comportamento pluviométrico da região. Os dados de pluviometria disponíveis para a bacia englobam o período de 01 de janeiro de 1937 a 31 de dezembro de 2018.

Os dados disponíveis no *HidroWeb* já são consistidos, ou seja, não foi necessária a aplicação de nenhum procedimento para correção de dados nas séries obtidas. Quanto às falhas, admitiu-se um limiar aceitável de, no mínimo, 355 dias por ano de registro de medições. Para anos que apresentaram 10 ou menos falhas, a precipitação deste dia foi corrigida tendo como base valores médios da região; já para anos com mais de 10 falhas, ou seja, menos de 355 registros de precipitação, optou-se por desconsiderar este ano do cálculo das médias, de forma a garantir a representatividade das análises realizadas.

Tabela 5.2. Precipitações médias anuais das estações pluviométricas contidas na BHJ.

Código	Nome	Precipitação média anual (mm)		
02346013	Jundiaí (CPEF)	1798,8		
02346014	Ermida	1389,7		
02346015	Rio Acima	1514,5		
02346097	Jundiaí	1568,4		
02347007	Indaiatuba	1251,1		
02347011	Fazenda Santa Rita	1405,0		
02347020	Fazenda Pinhal	1455,5		
02347055	Itaici	1246,5		
02347057	Itupeva	1344,7		
02347145	Salto	1236,1		

Para a estimativa das precipitações extremas utilizadas no modelo hidrológico da Bacia Hidrográfica do Rio Jundiaí, buscou-se equações que representem chuvas intensas na região, dando prioridade aos estudos oficiais já disponibilizados.

5.2. Equações Intensidade-Duração-Frequência (IDF) utilizadas

Para a construção das equações IDF, é necessário obter as máximas precipitações diárias de cada uma das estações pluviométricas selecionadas para o ajuste. Assim, para cada um dos postos selecionados a partir do *HidroWeb*, as precipitações máximas de 1 dia foram filtradas, e realizado a partir destas um ajuste estatístico utilizando a distribuição de extremos de Gumbel, ajustando os tempos de retorno (TR) conforme apresentado nas Equações 5.1, 5.2 e 5.3:

$$\mu = M\acute{e}dia (P_{m\acute{a}x} \ 1 \ dia) - 0,451$$
 5.1

$$\alpha = 0,7797 \cdot Desvio Padrão (P_{máx} 1 dia)$$
 5.2

$$P_{m\acute{a}x}1\ dia = \mu - \alpha \cdot \left\{ \ln \left[-\ln \left(1 - \left(\frac{1}{TR} \right) \right) \right] \right\}$$
 5.3

A partir disso, é possível obter os valores das precipitações máximas diárias para vários tempos de retorno. Entretanto, para a construção das equações IDF, necessita-se de intensidades de precipitação inferiores a 1 dia. Portanto, buscou-se na literatura valores de referência de coeficientes de relações entre durações, de modo que seja possível estimar os valores de precipitação máxima para demais durações, partindo da $P_{\text{máx}}$ 1 dia.

Os valores de referência foram obtidos através de estudos para o Estado de São Paulo, disponibilizados pela CETESB (1979 *apud* TUCCI, 1993, p. 208). As precipitações e intensidades observadas serão então calculadas através destas relações de conversão, para diferentes durações e tempos de retorno. Assim, a equação IDF busca relacionar a intensidade de precipitação, sua duração e a frequência de ocorrência, através do tempo de retorno (TR). O formato mais comumente utilizado é o apresentado a seguir, na Equação 5.4.

$$i = \frac{a \cdot TR^b}{(t+c)^d}$$
 5.4

Onde: i é a intensidade de precipitação (mm/h); TR é o tempo de recorrência da chuva (anos); t é o tempo de duração da precipitação (min); e *a*, *b*, *c*, *d* são os parâmetros de ajuste da equação aos dados disponíveis.

Para a obtenção dos valores numéricos dos parâmetros de ajuste da equação, foi utilizada a ferramenta *Solver*, disponível no Excel©. A determinação é feita através do método do Gradiente Reduzido Generalizado (GRG), utilizando os valores de precipitação observados e estimados, que são obtidos a partir das relações de conversão de duração da precipitação máxima de 1 dia, para as quatro estações pluviométricas selecionadas. Já a intensidade e a precipitação estimadas são calculadas

através da aplicação da Equação 5.4, considerando valores iniciais de ajuste para os coeficientes a, b, c e d.

Para o ajuste dos coeficientes, procedeu-se o cálculo do somatório do erro quadrático total, que é o resultado entre a soma do erro quadrado das intensidades e a soma do erro quadrado das precipitações. Utilizou-se também a ferramenta *Solver* para minimizar este erro, variando os coeficientes *a*, *b*, *c* e *d* da equação IDF. Após algumas iterações, a soma dos erros quadrados enfim converge para um valor mínimo, e os coeficientes finais são enfim obtidos, conforme ilustrado nos itens a seguir.

5.2.1. IDF da estação pluviométrica Itupeva

$$i = \frac{865,45 \cdot (TR^{0,161})}{(t+11,52)^{0,756}}$$
, R² = 99,89% 5.5

5.2.2. IDF da estação pluviométrica Jundiaí

$$i = \frac{949,14 \cdot (TR^{0,186})}{(t+11,52)^{0,756}}$$
, $R^2 = 99,84\%$ 5.6

5.2.3. IDF da estação pluviométrica Fazenda Pinhal

$$i = \frac{893,51 \cdot (TR^{0,161})}{(t+11,52)^{0,756}}$$
, R² = 99,89% 5.7

5.2.4. IDF da estação pluviométrica Indaiatuba

$$i = \frac{884,92 \cdot (TR^{0,187})}{(t+11,52)^{0,756}}$$
, R² = 99,83% 5.8

5.2.5. Equação IDF da estação pluviométrica Rio Acima

A equação IDF disponibilizada através do Atlas Pluviométrico do Brasil (CPRM, 2013) que está inserida na Bacia Hidrográfica do Rio Jundiaí foi ajustada para a estação Rio Acima (02346015/ E3-230). Localizada nas coordenadas 23°13′1,8″ S (latitude) e 46°40′1,6″ W (longitude), o período de dados utilizados para o ajuste engloba os anos de 1974 a 1993. A Equação 5.9 apresenta os coeficientes obtidos com o ajuste.

$$i = \frac{2144,7 \cdot (TR^{0,1566})}{(t+19)^{0,9105}}$$
 5.9

Onde: i é a intensidade de precipitação (mm/h); TR é o tempo de recorrência da chuva (anos); e t é o tempo de duração da precipitação (min).

5.3. Dados fluviométricos

Os dados fluviométricos utilizados para caracterizar o padrão das vazões médias e máximas no Rio Jundiaí foram obtidos através dos postos fluviométricos disponibilizados no portal *HidroWeb* (ANA, 2019). Dos cinco (05) postos selecionados, apenas três (03) (62390000, 62395000 e

62400000) são operados diretamente pela ANA, enquanto os demais estão sob responsabilidade do Departamento de Águas e Energia Elétrica do Estado de São Paulo (DAEE-SP).

Os dados de vazões disponíveis para a bacia englobam o período de 01 de dezembro de 1963 a 31 de julho de 2018, e já são consistidos, ou seja, não foi necessária a aplicação de nenhum procedimento para correção das séries obtidas. Quanto às falhas, admitiu-se um limiar aceitável de, no mínimo, 355 dias por ano de registro de medições. Para anos com mais de 10 falhas, ou seja, menos de 355 registros de vazão, optou-se por desconsiderar este ano do cálculo das médias, de forma a garantir a representatividade das análises realizadas.

5.3.1. Vazões máximas

Para a estimativa das vazões extremas a serem utilizadas para calibração do modelo hidrodinâmico da Bacia Hidrográfica do Rio Jundiaí, aplicou-se uma distribuição de extremos para os postos fluviométricos selecionados na bacia, a partir dos dados de descarga líquida máximos diários. O método utilizado foi a distribuição de Gumbel, neste caso aplicado às vazões máximas.

Após a obtenção das vazões diárias máximas de cada ano da série histórica, foram calculadas a média e o desvio padrão dos dados, para cada

um dos quatro (04) postos fluviométricos selecionados. A vazão referente a cada um dos tempos de retorno considerados no presente estudo foi obtida a partir da aplicação das equações 5.1, 5.2 e 5.3, apresentadas anteriormente (item 5.2).

Tabela 5.3. Vazões máximas obtidas a partir da aplicação do método de Gumbel, para os tempos de retorno de 2, 5, 10 anos.

Posto		Área de	Tempo de retorno (TR)		
fluviométrico		drenagem (km²)	2 anos	5 anos	10 anos
Campo Limpo	62385100	101,0	8,5	11,6	13,6
Jundiaí	62390000	263,0	21,8	29,2	34,1
Itupeva	62395000	632,0	80,2	113,8	136,0
Itaici	62400000	795,0	56,9	82,5	99,4

Tabela 5.4. Vazões máximas obtidas a partir da aplicação do método de Gumbel, para os tempos de retorno de 25, 50 e 100 anos.

Posto	Código	Área de	Tem	(TR)	
fluviométrico		drenagem (km²)	25 anos	50 anos	100 anos
Campo Limpo	62385100	101,0	16,2	18,1	20,0
Jundiaí	62390000	263,0	40,4	45,0	49,5
Itupeva	62395000	632,0	164,1	184,9	205,6
Itaici	62400000	795,0	120,9	136,8	152,5

5.3.2. Níveis máximos

No estudo, foi estabelecido que o nível d'água na foz do Rio Jundiaí, onde este se encontra com o Rio Tietê, será a condição de contorno de jusante da modelagem hidrodinâmica da bacia. Neste caso, na foz do Rio Jundiaí encontra-se a Pequena Central Hidrelétrica (PCH) Porto Góes, cuja operação teve início no ano de 1928 e, atualmente, é operada pela Empresa Metropolitana de Águas e Energia S.A. (EMAE).

Então, para cada um dos anos disponíveis da série, foram obtidos os valores máximos de nível d'água e posteriormente calculado sua média e seu desvio padrão. A partir destes valores foi aplicada a distribuição de extremos de Gumbel, resultando nos níveis d'água para os tempos de retorno considerados na simulação hidrodinâmica, cujos valores obtidos são apresentados a seguir (Tabela 5.5).

Tabela 5.5. Valores máximos de nível d'água obtidos pela distribuição de máximos de Gumbel para a estação fluviométrica PCH Porto Góes Barramento.

Tempo de retorno, TR (anos)	Nível d'água máximo (m)
2	521,10
5	521,23
10	521,31
25	521,42
50	521,50
100	521,58

^{*} Os valores apresentados acima referem-se a cotas de nível d'água, observadas no reservatório da PCH Porto Góes, localizada na foz do Rio Jundiaí com o Rio Tietê. Estes valores de cota de nível d'água estão relacionados a Referência de Nível (RN) oficial utilizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE).

6. DIAGNÓSTICO

6.1. Simulação hidrológica

6.1.1. Caracterização fisiográfica da Bacia Hidrográfica do Rio Jundiaí

Áreas de contribuição (sub-bacias)

Para a simulação, a área de estudo foi dividida em 32 sub-bacias hidrográficas, que representam a contribuição dos afluentes do Rio Jundiaí. A delimitação das sub-bacias foi baseada na base hidrográfica ottocodificada, elaborada pela Agência Nacional de Águas e Saneamento Básico (ANA) a partir da escala 1:50.000.

Além disso, a hidrografia disponibilizada pela Instituto Geográfico e Cartográfico (IGC) do Estado de São Paulo na escala 1:25.000 (IGC, 2010) também foi utilizada, visando a realização de alguns ajustes na base da ANA. A Tabela 6.1, a seguir, apresenta algumas das características das sub-bacias hidrográficas do Rio Jundiaí.

Tabela 6.1. Características das sub-bacias do Rio Jundiaí.

Código da sub-bacia	Nome do talvegue	Área (ha)	Tipo de contribuição
SB01	Rio Jundiaí (trecho montante)	13.452,9	Pontual
SB02	Calha do Jundiaí - montante em Campo Limpo Paulista	643,0	Lateral
SB03	Campo Limpo Paulista (bairro Vila Botujuru)	1.390,0	Pontual
SB04	Calha do Jundiaí - jusante em Campo Limpo Paulista	645,9	Lateral
SB05	Córrego do Moinho	1.257,0	Pontual
SB06	Calha do Jundiaí - divisa de Campo Limpo Paulista e Várzea Paulista	1.302,6	Lateral
SB07	Córrego Pinheirinho	1.014,1	Pontual
SB08	Calha do Jundiaí - divisa de Várzea Paulista e Jundiaí	2.252,8	Lateral
SB09	Rio das Pedras	6.522,0	Pontual
SB10	Calha do alto Jundiaí no município de Jundiaí	1.689,3	Lateral
SB11	Córrego da Valquíria	2.027,3	Pontual
SB12	Calha do médio Jundiaí no município de Jundiaí	184,9	Lateral
SB13	Rio Jundiaí-Mirim	11.888,5	Pontual
SB14	Calha do baixo Jundiaí no município de Jundiaí	7.862,0	Lateral
SB15	Ribeirão Caxambú	9.841,8	Pontual
SB16	Calha do Jundiaí - divisa de Jundiaí e Itupeva	2.211,5	Lateral
SB17	Córrego da Lagoa	1.837,0	Pontual
SB18	Calha do alto Jundiaí no município de Itupeva	1.017,1	Lateral
SB19	Itupeva (bairro Monte Serrat)	1.204,4	Pontual
SB20	Calha do médio Jundiaí no município de Itupeva	479,5	Lateral
SB21	Ribeirão das Furnas ou São José	3.959,3	Pontual
SB22	Calha do baixo Jundiaí no município de Itupeva	1.066,1	Lateral

Código da sub-bacia	Nome do talvegue	Área (ha)	Tipo de contribuição	
SB23	Córrego da Fazenda Itatuba	1.705,9	Pontual	
SB24	Calha do Jundiaí - divisa de Itupeva e Indaiatuba	317,7	Lateral	
SB25	Córrego da Fonte/Santa Rita	2.795,5	Pontual	
SB26	Calha do Jundiaí - montante em Indaiatuba	5.395,7	Lateral	
SB27	Córrego da Barrinha	2.460,6	Pontual	
SB28	Calha do Jundiaí - jusante em Indaiatuba	387,8	Lateral	
SB29	Córrego do Barnabé	2.984,3	Pontual	
SB30	Calha do Jundiaí - divisa de Indaiatuba e Salto	1.750,9	Lateral	
SB31	Ribeirão Piraí	21.946,4	Pontual	
SB32	Rio Jundiaí (foz)	1.954,6	Lateral	

Uso do solo

Para a adequação do uso do solo na Bacia Hidrográfica do Rio Jundiaí, foram determinadas classes de uso equivalentes, propostas por Tucci (1993), para cada um dos usos do solo observados na bacia e apresentados na Figura 6.1. O uso do solo apresentado é oriundo do Plano das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí (PROFILL/RHAMA, 2018a), com atualização das áreas urbanas utilizando imagens de satélite mais recentes.

A Tabela 6.2 apresenta a reclassificação adotada, bem como os valores do parâmetro *Curve Number* (CN) considerados para cada um dos Grupos Hidrológicos.

Tabela 6.2. Classes de uso do solo equivalentes para a BHJ e respectivos valores de CN associados.

Classe de uso do solo original	Classe equivalente adotada*		Valor de CN adotado segundo o grupo hidrológico do solo			
		Α	В	С	D	
Afloramento rochoso	Rocha	96	96	96	96	
Área Urbanizada	Lotes < 500 m², 65% impermeável	77	85	90	92	
Campo	Campos permanentes normais	36	60	73	79	
Campo Úmido	Água	100	100	100	100	
Cana de Açúcar	Plantações cultivadas normais		69	79	94	
Água	Água		100	100	100	
Lavoura Permanente	Plantações regulares em curva de nível		77	83	87	
Lavoura Temporária	Plantações cultivadas normais		69	79	94	
Mata Nativa	Florestas normais		60	70	76	
Mineração	Lotes < 500 m², 65% impermeável	77	85	90	92	
Outros Usos	Estacionamento, telhados, viadutos	98	98	98	98	
Pivô	Plantações cultivadas normais	49	69	79	94	
Silvicultura	Florestas esparsas	46	68	78	84	
Solo exposto	Solo lavrado com sulcos retilíneos	77	86	91	94	

^{*} Segundo Tucci (1993).

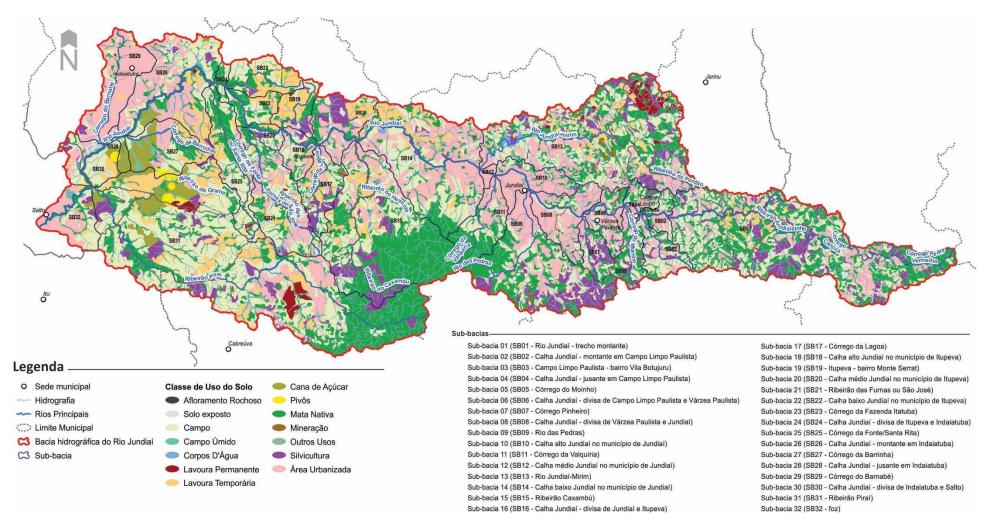


Figura 6.1. Uso do solo na Bacia Hidrográfica do Rio Jundiaí.

Obtenção do parâmetro Curve Number (CN)

A partir da sobreposição do tipo de solo (já associado aos respectivos grupos hidrológicos) ao uso do solo reclassificado foi possível obter valores de CN para toda a Bacia Hidrográfica do Rio Jundiaí, conforme ilustrado a seguir (Figura 6.4). A média do coeficiente CN para toda a BHJ foi de 82,2.

A Tabela 6.3 apresenta os valores mínimos, médios, máximos e ponderado pela área do coeficiente CN para cada uma das 32 sub-bacias da área de estudo.

Tabela 6.3. Valores mínimos, médios e máximos do parâmetro CN obtidos nas sub-bacias da BHJ.

Código		Valores de CN			
da sub-bacia	Sub-bacia	Mínimo	Médio	Máximo	Ponderado pela área
SB01	Rio Jundiaí (trecho montante)	70	85,3	100	75,6
SB02	Calha do Jundiaí - montante em Campo Limpo Paulista	70	81,4	92	80,4
SB03	Campo Limpo Paulista (bairro Vila Botujuru)	70	82,7	94	77,5
SB04	Calha do Jundiaí - jusante em Campo Limpo Paulista	70	82,7	94	80,3
SB05	Córrego do Moinho	70	82,3	100	75,9
SB06	Calha do Jundiaí - divisa de Campo Limpo Paulista e Várzea Paulista	70	84,4	100	82,5
SB07	Córrego Pinheirinho	70	84,3	100	79,1
SB08	Calha do Jundiaí - divisa de Várzea Paulista e Jundiaí	70	84,3	100	86,6
SB09	Rio das Pedras	70	84,3	100	77,8
SB10	Calha do alto Jundiaí no município de Jundiaí	70	84,3	100	87,7

Código		Valores de CN			
da sub-bacia	Sub-bacia	Mínimo	Médio	Máximo	Ponderado pela área
SB11	Córrego da Valquíria	70	85,0	100	76,9
SB12	Calha do médio Jundiaí no município de Jundiaí	79	91,0	100	91,9
SB13	Rio Jundiaí-Mirim	70	85,2	100	76,9
SB14	Calha do baixo Jundiaí no município de Jundiaí	70	84,5	100	82,5
SB15	Ribeirão Caxambú	36	75,6	100	72,6
SB16	Calha do Jundiaí - divisa de Jundiaí e Itupeva	70	85,4	100	80,9
SB17	Córrego da Lagoa	36	75,6	100	74,1
SB18	Calha do alto Jundiaí no município de Itupeva	70	84,3	100	80,3
SB19	Itupeva (bairro Monte Serrat)	70	84,2	100	77,7
SB20	Calha do médio Jundiaí no município de Itupeva	70	83,6	100	75,6
SB21	Ribeirão das Furnas ou São José	70	84,4	100	78,9
SB22	Calha do baixo Jundiaí no município de Itupeva	70	82,3	100	73,9
SB23	Córrego da Fazenda Itatuba	60	76,4	100	74,6
SB24	Calha do Jundiaí - divisa de Itupeva e Indaiatuba	60	75,8	100	70,2
SB25	Córrego da Fonte/Santa Rita	60	80,3	100	73,7
SB26	Calha do Jundiaí - montante em Indaiatuba	60	82,0	100	79,3
SB27	Córrego da Barrinha	60	80,5	100	76,4
SB28	Calha do Jundiaí - jusante em Indaiatuba	60	76,8	92	72,7
SB29	Córrego do Barnabé	60	81,7	100	88,9
SB30	Calha do Jundiaí - divisa de Indaiatuba e Salto	60	81,2	100	76,1
SB31	Ribeirão Piraí	60	80,9	100	74,9
SB32	Rio Jundiaí (foz)	60	79,5	100	82,4

Agência das Bacias PCJ RELATÓRIO SÍNTESE

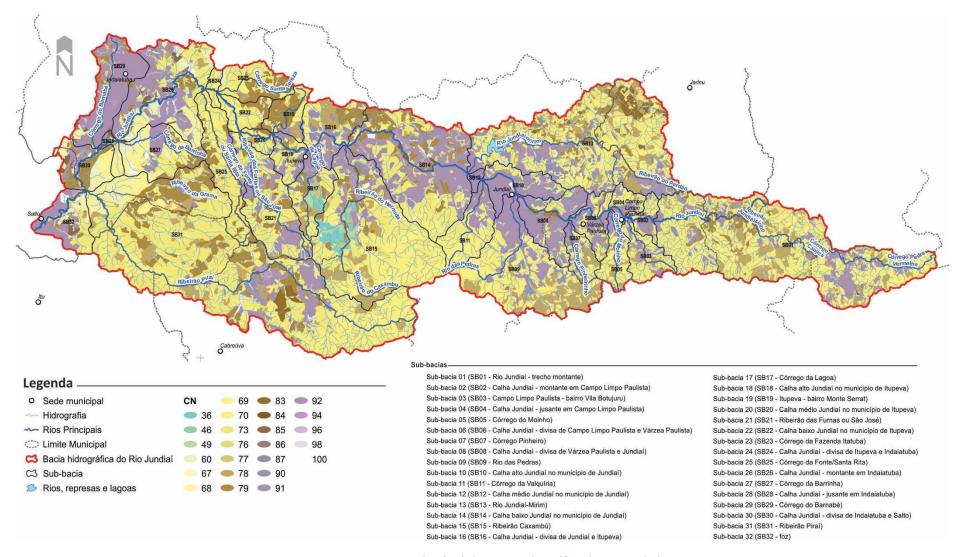


Figura 6.2. *Curve Number* (CN) da Bacia Hidrográfica do Rio Jundiaí.

Para todas as sub-bacias contribuintes do Rio Jundiaí foram aplicadas quatro fórmulas distintas para o cálculo do tempo de concentração (TUCCI, 1993; COLLISCHONN & DORNELLES, 2013), detalhadas na Tabela 6.4.

Tabela 6.4. Equações aplicadas para o cálculo do tempo de concentração das bacias hidrográficas do Rio Jundiaí.

Equações				
Kirpich	$t_c = 3,989 \cdot L^{0,77} \cdot S^{-0,385}$			
SCS Lag Fórmula	$t_c = 3,42 \cdot L^{0.8} \cdot \left(\frac{1000}{CN} - 9\right)^{0.7} \cdot S^{-0.5}$			
Watt & Chow	$t_c = 7,68 \cdot \left(\frac{L}{S^{0.5}}\right)^{0.79}$			
Dooge	$t_c = 21,88 \cdot A^{0,41} \cdot S^{-0,17}$			

Onde:

 t_c é o tempo de concentração (min); L é o comprimento do curso d'água principal (km); S é a declividade do curso d'água principal (m/m); A é a área de drenagem da sub-bacia (km²); e CN é o parâmetro *Curve Number* da sub-bacia (adimensional).

O gráfico apresentado a seguir (Figura 6.3), traz os resultados do cálculo de tempo de concentração de todas as sub-bacias. A equação escolhida para a aplicação no estudo foi a de Watt & Chow, por apresentar resultados intermediários entre todas as equações aplicadas, bem como por

ter sido desenvolvida para bacias com área de drenagem da ordem de até 5800 km² (DINGMAN, 2002), o que representa de forma adequada a ordem de grandeza observada para as sub-bacias do Rio Jundiaí.

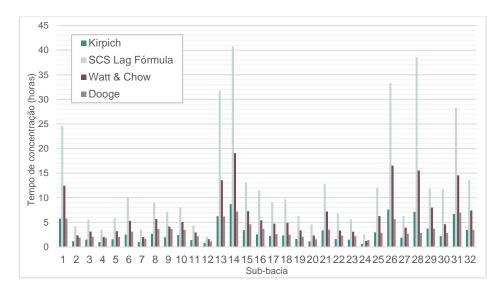


Figura 6.3. Aplicação de quatro equações diferentes para o cálculo do tempo de concentração das sub-bacias do Rio Jundiaí.

Modelo Hydrologic Modeling System (HEC-HMS)

O modelo HEC-HMS (*Hydrologic Modeling System*) foi desenvolvido para simular os processos de chuva-vazão em bacias hidrográficas dendríticas. É um *software* gratuito e pode ser aplicado em uma ampla gama de problemas nas áreas de estudo da hidrologia, como drenagem urbana, estudos de dimensionamento de reservatórios, avaliações de disponibilidade hídrica, entre outros. A simulação hidrológica é realizada através da discretização da bacia hidrográfica, através da divisão em subbacias, trechos de rios e canais, junções (ou afluências), desvios e transposições e até mesmo reservatórios. Processos como infiltração, interceptação, escoamento de base e, principalmente, transformação chuva-vazão e propagação de cheias em rios são simulados através de modelos matemáticos disponíveis acoplados ao software (USACE-HEC, 2015).

6.1.2. Resultados da simulação hidrológica

Este item apresenta os principais resultados da simulação hidrológica obtidos com a aplicação do modelo HEC-HMS para a Bacia Hidrográfica do Rio Jundiaí, com as principais características dos hidrogramas gerados, para o tempo de retorno de 10 anos. As informações para os demais Tempos de

Retorno estudados podem ser obtidas através de consulta ao Relatório Final (RT 10).

Tempo de retorno de 10 anos

A Tabela 6.5 apresenta os principais valores que caracterizam o hidrograma de projeto gerado para o cenário de 10 anos de tempo de retorno. A Figura 6.4 ilustra os dados apresentados na tabela a seguir, apresentando de forma gráfica as vazões de pico do hidrograma de 10 anos de tempo de recorrência para as 32 sub-bacias que compõem a simulação realizada no Rio Jundiaí.

Tabela 6.5. Valores característicos do hidrograma de projeto de 10 anos de tempo de recorrência.

Código da sub-bacia	Vazão de pico (m³/s)	Tempo para atingir o pico de vazão (min)	Volume total precipitado (mm)	Volume total escoado (m³)
SB01	126,3	860	91,00	5009,6
SB02	23,6	170	71,40	196,1
SB03	37,4	220	75,20	402,3
SB04	25,6	140	68,90	183,1
SB05	30,7	230	75,60	340,9
SB06	40,3	370	96,60	712,6
SB07	41,2	150	73,20	303,3
SB08	78	390	98,30	1461,3
SB09	186,9	290	90,30	2641,9
SB10	64,9	350	95,50	1098,7
SB11	65,4	210	81,70	669,4
SB12	15,8	110	68,00	90,3

Código da sub-bacia	Vazão de pico (m³/s)	Tempo para atingir o pico de vazão (min)	Volume total precipitado (mm)	Volume total escoado (m³)
SB13	177,5	950	123,20	7819,4
SB14	92,4	1330	116,00	5685,1
SB15	128,6	520	90,40	3172,4
SB16	49,4	380	83,50	903,3
SB17	31,1	340	80,50	511,6
SB18	23,4	350	81,40	390,3
SB19	28,9	240	73,30	343,6
SB20	11,4	160	65,60	95,7
SB21	71,1	510	90,20	1713,5
SB22	24,6	240	78,50	287,4
SB23	42,7	220	76,90	470,2
SB24	6,7	90	57,10	34
SB25	41	450	86,90	877,3
SB26	69,7	1160	119,80	3732
SB27	64,8	280	82,20	883,1
SB28	4	1100	117,90	202,5
SB29	81,6	550	99,60	2137,2
SB30	38,8	330	86,00	612,4
SB31	239,2	1030	111,50	11401,3
SB32	45,6	520	97,50	1119

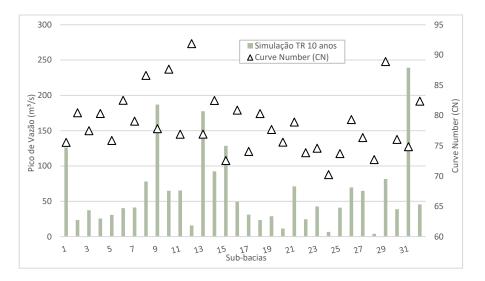


Figura 6.4. Vazão de pico do hidrograma de 10 anos de tempo de retorno para as sub-bacias do Rio Jundiaí e seus respectivos coeficientes CN.

Compilação dos resultados para todos os tempos de retorno

A Figura 6.5 ilustra graficamente a magnitude dos picos de vazão de cada uma das sub-bacias, para todos os tempos de retorno simulados, organizados em ordem crescente; ou seja, do menor pico, observado na sub-bacia 28 (Calha do Jundiaí – jusante em Indaiatuba), ao maior pico, observado na sub-bacia 31 (Ribeirão Piraí).

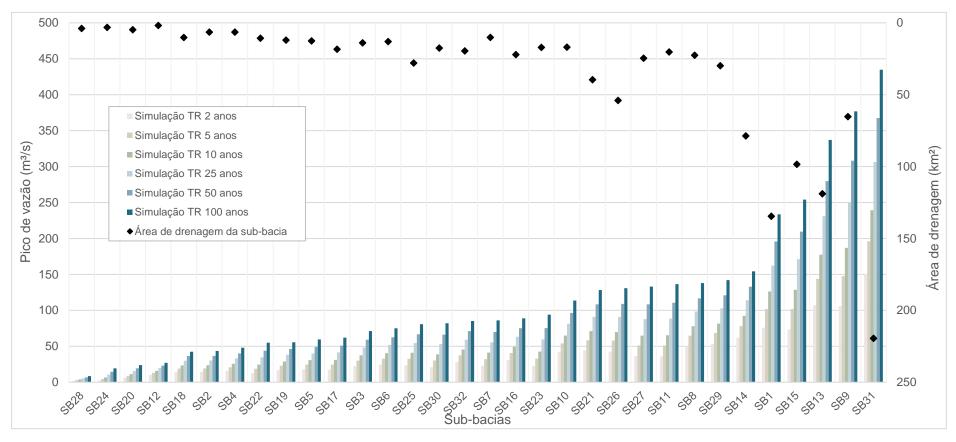


Figura 6.5. Resumo, em ordem crescente, das vazões de pico obtidas para as 32 sub-bacias do Rio Jundiaí, em todos os cenários simulados.

6.2. Simulação hidrodinâmica

O presente item expõe a criação do modelo hidrodinâmico da Bacia Hidrográfica do Rio Jundiaí. Nele são abordados a elaboração do MNT (Modelo Numérico do Terreno) e uma breve descrição do *software* HEC- RAS. A seguir, Figura 6.6, está apresentado o diagrama unifilar da bacia utilizado para as simulações realizadas.

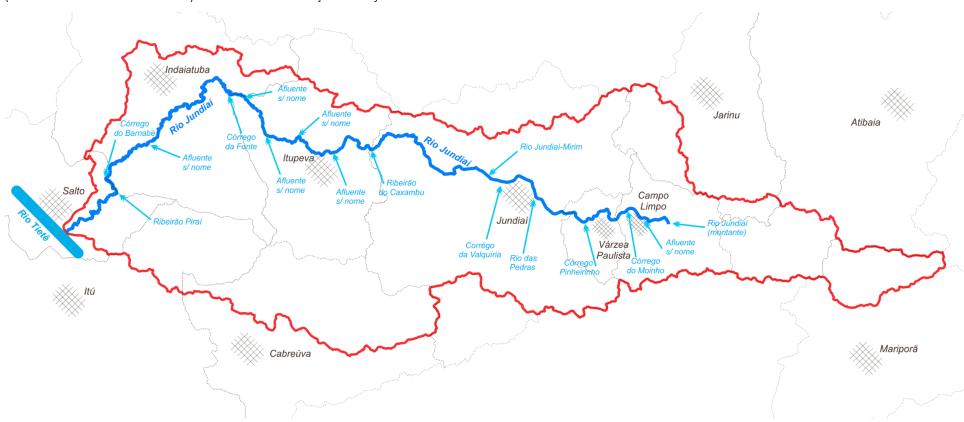


Figura 6.6. Diagrama Unifilar para simulação na Bacia Hidrográfica do Rio Jundiaí.

6.2.1. Calibração do modelo

A calibração do modelo foi realizada manualmente, através da comparação visual da série de níveis observados e calculados nas estações localizados no Rio Jundiaí, dentre elas foram escolhidas as seguintes estações: 62390000 (Jundiaí), 62395000 (Itupeva) e 62400000 (Itaici).

O parâmetro utilizado na calibração foi o coeficiente de Manning, o qual representa o parâmetro mais sensível para o ajuste do nível nas seções observadas, tanto na calha principal quanto na planície de inundação. Cabe ressaltar que outros parâmetros hidráulicos disponíveis no modelo ou não apresentam sensibilidade sobre a oscilação do nível d'água durante um evento de cheia ou há uma carência de dados observados para avaliação desses coeficientes de maneira mais precisa, como, por exemplo, ocorre nas travessias (pontes). Nesses casos, esses parâmetros, foram mantidos como padrão pelo modelo.

O ajuste do coeficiente de Manning resultou em valores de n variando entre 0,035 e 0,040 para a planície de inundação, e entre 0,015 e 0,035 para calha principal.

6.2.2. Resultados da simulação hidrodinâmica: manchas de inundação

Este item apresenta o resultado da simulação hidrodinâmica realizada com o *software* HEC-RAS para a Bacia Hidrográfica do Rio Jundiaí. O produto desta atividade são as manchas de inundação para a calha do Rio Jundiaí, que foram agrupadas por tempo de retorno de simulação. Aqui serão apresentadas as informações para o tempo de retorno de 10 anos. As informações para os demais Tempos de Retorno estudados podem ser obtidas através de consulta ao Relatório Final (RT 10).

Tempo de retorno de 10 anos

A representação da mancha de inundação para a Bacia Hidrográfica do Rio Jundiaí, com tempo de retorno de 10 anos, é apresenta na Figura 6.7. No Relatório Final (RT 10), este encontra-se apresentado em maior detalhe, subdivido em 18 páginas (ou frames), elaboradas visando o atendimento da escala de apresentação definida nos Termos de Referência do presente estudo.

Compilação dos resultados para todos os tempos de retorno

A representação das manchas de inundação para a Bacia Hidrográfica do Rio Jundiaí, com sobreposição de todos os períodos de retorno simulados, é apresenta na Figura 6.8 (2, 5, 10, 25, 50 e 100 anos).

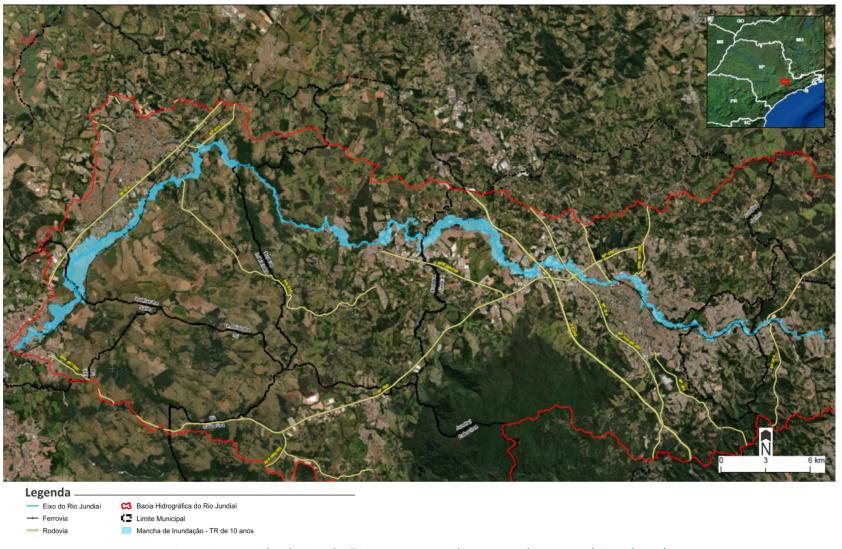


Figura 6.7. Mancha de inundação para o Tempo de Retorno de 10 anos (Diagnóstico).

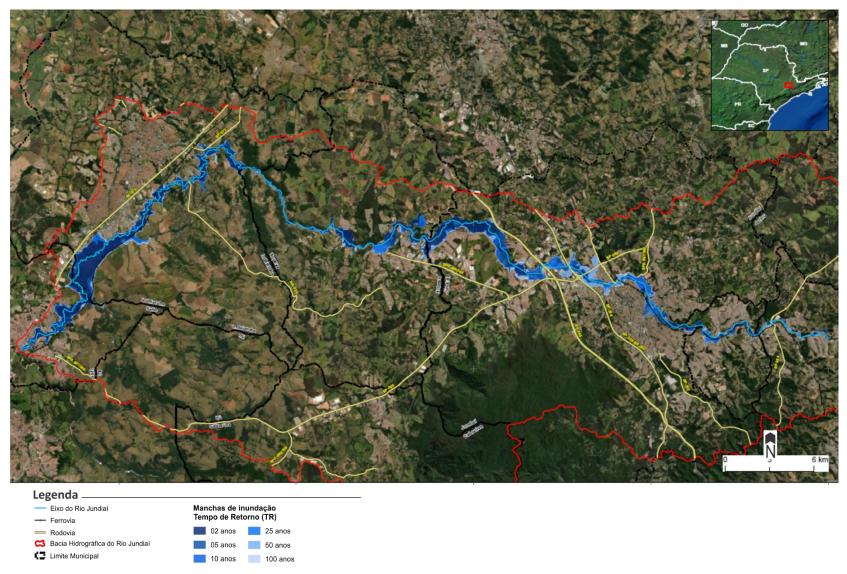


Figura 6.8. Mancha de inundação para todos os Tempos de Retorno - 2, 5, 10, 25, 50 e 100 anos (Diagnóstico).

6.3. Avaliação da condição atual da BHJ

No Diagnóstico foi realizada uma análise comparativa dos níveis de cheia e as cotas das travessias ao longo do Rio Jundiaí para verificar em quais estruturas o nível da cheia está acima da cota do topo da travessia (falhas), considerando os tempos de retorno (TR) estudados de 2, 5, 10, 25, 50 e 100 anos.

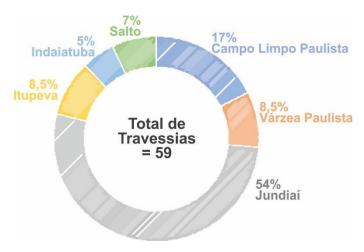


Figura 6.9. Travessias com falhas, por município.

Do total de 68 travessias, em apenas 11 não ocorre falhas, sendo que em quatro delas, o nível da cheia atinge a estrutura. É importante destacar que as estruturas que não apresentam falhas são travessias de grande porte (viadutos, linhas férreas e pontes de concreto). A Figura 6.10 apresenta o somatório de travessias com falhas por tempo de retorno.

Tempo de Retorno (TR)	Estruturas (com falhas)	Tipologia das Estruturas
2 anos	22	1 barramento (controle de nível) 6 passarelas 1 adutora 14 pontes
5 anos	13	2 passarelas 1 adutora 10 pontes
10 anos	15	3 passarelas 2 adutoras 10 pontes
25 anos	4	1 passarelas 3 pontes
50 anos	3	3 pontes
100 anos	2	2 pontes

Figura 6.10. Falhas nas travessias por tempo de retorno.

A análise de falhas também foi realizada para os principais afluentes, avaliando a capacidade de entrega ao Rio Jundiaí, frente às vazões estimadas na modelagem.

Finalmente, a Figura 6.11, apresenta os níveis de criticidade das subbacias formadoras do Rio Jundiaí, as vermelhas são as mais críticas (5), as verdes em situação mais confortável (10) e as amarelas em alerta (17). Nela, pode-se visualizar as estruturas que falham com frequência alta e baixa.

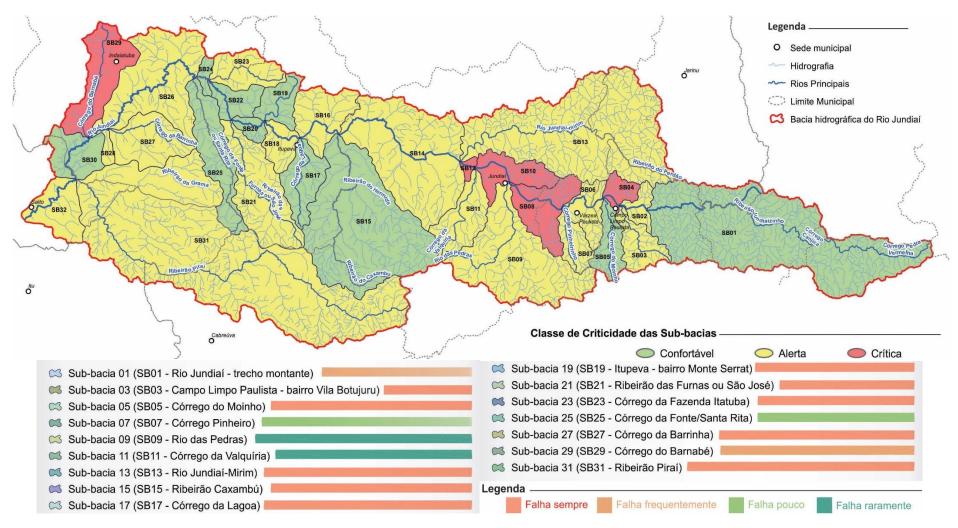


Figura 6.11. Identificação da criticidade nas Sub-bacias do Jundiaí.

7. PROGNÓSTICO

O Prognóstico da Bacia Hidrográfica do Rio Jundiaí apresenta o cenário futuro de ocupação da bacia, realizado a partir das projeções populacionais estimadas para o ano de 2040, e a partir dele, foi revisada a simulação hidrológica das 32 sub-bacias constituintes da BHJ.

Além disso, uma nova simulação hidrodinâmica foi realizada ao longo da calha do Rio Jundiaí, visando representar os possíveis acréscimos causados nas manchas de inundação de diferentes tempos de retorno, em virtude da mudança no uso e ocupação do solo da bacia.

7.1. Simulação hidrológica

7.1.1. Cenário futuro de ocupação: estimativa do parâmetro Curve Number (CN)

Finalizada a etapa de expansão da área urbana até o valor projetado para o ano de 2040, foi realizada a reclassificação do uso do solo, de acordo com os grupos hidrológicos da bacia.

A partir da sobreposição do tipo de solo já associado aos respectivos grupos hidrológicos, bem como o uso do solo reclassificado para o cenário

de prognóstico (ano de 2040), foi possível obter valores do parâmetro *Curve Number* (CN) para toda a Bacia Hidrográfica do Rio Jundiaí, conforme ilustrado na Figura 7.1.

A Figura 7.2 apresenta uma comparação entre os picos de vazão de cada uma das 32 sub-bacias da BHJ, para os cenários de Diagnóstico e Prognóstico.

7.2. Resultados da simulação hidrodinâmica: TR 10 anos

A representação da mancha de inundação para a Bacia Hidrográfica do Rio Jundiaí no cenário de Prognóstico, para todos os tempos de retorno simulados (2, 5, 10, 25, 50 e 100 anos) está apresentada na Figura 7.3.

No Relatório Final (RT 10), este encontra-se apresentado em maior detalhe, subdivido em 18 páginas (ou frames), elaboradas visando o atendimento da escala de apresentação definida nos Termos de Referência do presente estudo.

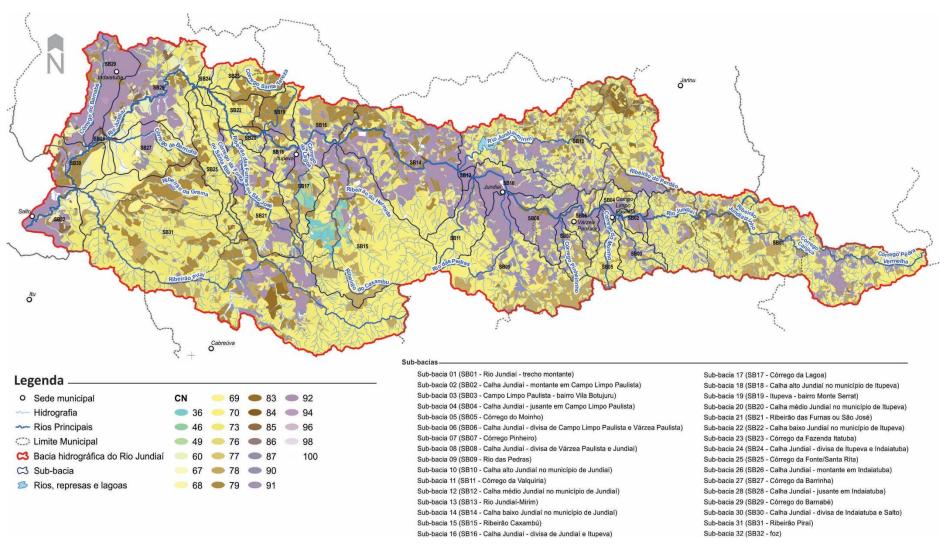


Figura 7.1. Parâmetro Curve Number (CN) referente ao Prognóstico para o ano de 2040.

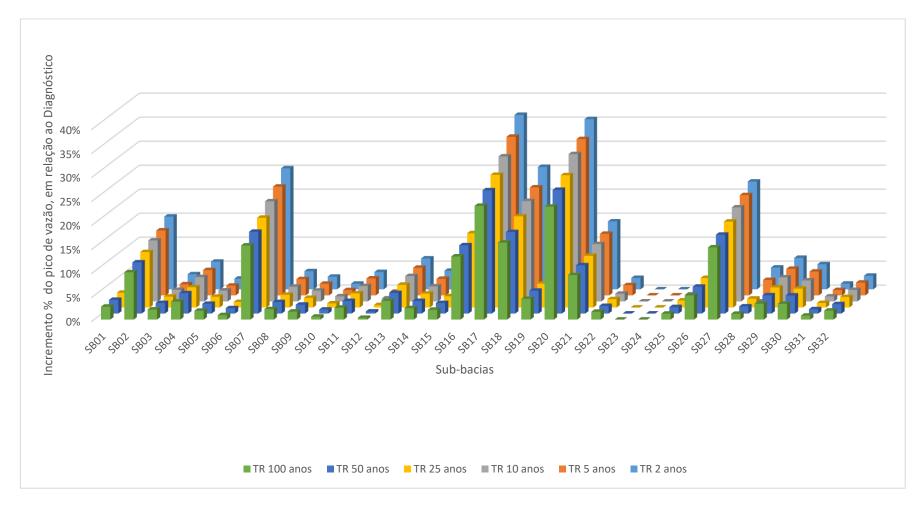


Figura 7.2. Incremento do pico de vazão gerada no cenário de Diagnóstico e de Prognóstico, em comparação por sub-bacia.

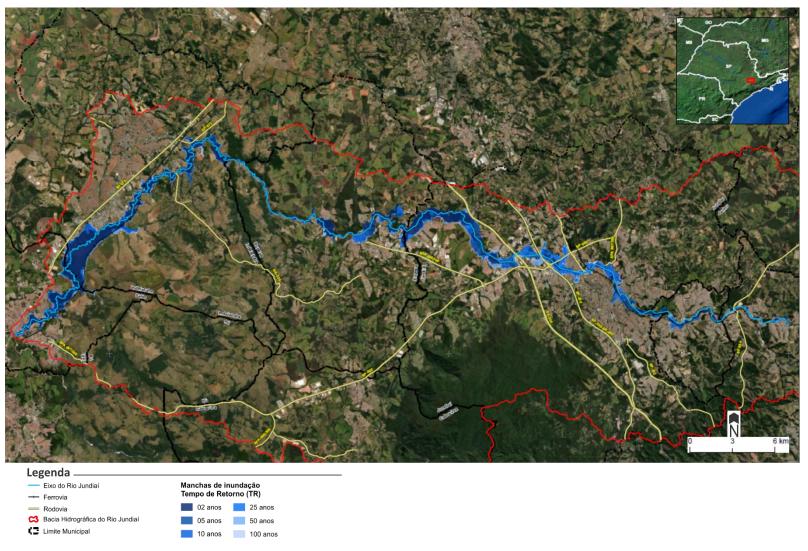


Figura 7.3. Mancha de inundação para todos os Tempos de Retorno - 2, 5, 10, 25, 50 e 100 anos (Prognóstico).

8. PLANO DE AÇÕES

Este item apresenta o Plano de Ações, com os programas a serem implementados na Bacia Hidrográfica do Rio Jundiaí, no que se refere a macrodrenagem. No contexto de um Plano Diretor, os programas são os estudos e ações complementares de médio e longo prazo, recomendados com o objetivo de melhorar as deficiências identificadas durante o desenvolvimento do Plano em questão. Os oito (08) programas propostos no contexto deste Plano Diretor de Macrodrenagem da BHJ são (Figura 8.1 e Figura 8.2):

Figura 8.1. Estrutura do Plano de Ações do PDM-BHJ.

Program	as para medidas e	struturais		Programas	para medidas não	estruturais	
Programa para construção de reservatórios de amortecimento de cheias	Programa de aumento da capacidade de condução de escoamento da calha do Rio Jundiaí	Programa de manejo de drenagem sustentável	Programa de monitoramento hidráulico-hidrológico, previsão, alerta e resposta	Programa de educação ambiental	Programa de medidas de fiscalização e controle	Programa de estruturação do Setor de Drenagem Urbana	Programa de elaboração de Planos de Drenagem Municipal
Reservatório na SB01 (Rio Jundiaí-montante)	Canalização em concreto	Zona urbana Valas de infiltração	Obter dados hidrológicos para planejamento	Informar sobre horários de coleta de resíduos nos municípios	Regular o escoamento superficial de novos empreendimentos	Definir o arranjo institucional do órgão de drenagem	Delimitar e obter informações de bacias hidrográficas para PDDr municipais
Reservatório na SB03 (Campo Limpo Paulista - bairro Vila Botujuru)	Bermas	Zona urbana Trincheiras de infiltração	Obter dados hidrológicos para previsão e alerta	Informar sobre horários de coleta de resíduos reclicáveis nos municípios	Propor o Zoneamento da Planície de Inundação	Garantir a sustentabilidade financeira do sistema	Elaborar termos de referência para PDDr municipais
Reservatório na SB04 (Calha Jundiaí - jusante em Campo Limpo Paulista)	Adequação de travessias	Zona urbana Banhados construídos ou <i>wetlands</i>	Implantação de sistema de previsão de vazões e níveis d'água e alerta	Informar sobre bacias hidrográficas e cursos d'água	Indicar a reserva de áreas ribeirinhas para detenção de cheias	Propor obras de drenagem e manejo de águas pluviais	Contratar empresa especializada para elaboração dos PDDr
Reservatório na SB05 (Córrego do Moinho)		Zona rural Barraginhas e adequação das estradas rurais	Elaborar Planos de Contingência	Capacitar técnicos municipais do setor de saneamento	Criar áreas de conservação e restrição de uso	Executar a manutenção das estruturas de drenagem urbana	
		Zona rural Terraceamento		Capacitar profissionais de engenharia, arquitetura e urbanismo		Definir parâmetros e critérios para Planos e Projetos em Drenagem Urbana	
		Zona rural Plantio direto e em curvas de nível					
		Zona rural Cordões de vegetação e recuperação de APPs					
		Zona rural Consorciamento de culturas					

Figura 8.2. Quadro-síntese das ações propostas no conjunto de programas do Plano de Ações.

8.1. Programa para construção de reservatórios de amortecimento de cheias

Este programa tem por finalidade orientar a implementação de estruturas que permitem reduzir o volume de água afluente ao Rio Jundiaí durante eventos de cheia na BHJ, definidas no contexto deste PDM. Este primeiro plano de ação de medidas estruturais se configura na construção de reservatórios de amortecimento, cujo indicativo foi realizado a partir de uma série de simulações para garantir a efetividade das propostas. e indicar as obras que proporcionem a melhor relação custo-benefício para a BHJ. Como resultado, pretende-se reduzir as vazões máximas na calha do Rio Jundiaí, no trecho logo a jusante da SB05 (Córrego do Moinho), de 130,7 m³/s para 36,3 m³/s. Assim, foram definidos dois tipos de reservatórios:

- Reservatórios de amortecimento do tipo on-line, ou de retenção: são os reservatórios localizados ao longo da rede de drenagem e se mantêm sempre com certa lâmina d'água;
- Reservatórios de amortecimento do tipo off-line, ou de detenção: são os reservatórios localizados fora da calha do curso d'água e que serve para armazenamento temporário da água, ficando vazios em períodos sem chuva.

São propostos quatro reservatórios (Figura 8.3):

- Um reservatório de retenção (on-line) na SB01 (Rio Jundiaí montante), posicionado na calha do próprio Rio Jundiaí, com volume de aproximadamente 4,5 hm³ e vazão máxima liberada de 6,1 m³/s. O barramento possui altura estimada de 15,0 m e área necessária de alague de aproximadamente 62,9 hectares;
- Um reservatório de detenção (off-line) na SB03 (Campo Limpo Paulista – bairro Vila Botujuru), localizado em um dos afluentes do Rio Jundiaí pela margem esquerda, com volume de cerca de 0,31 hm³ e vazão máxima liberada de 6,4 m³/s;
- Um reservatório de retenção (on-line) na SB04 (Calha Jundiaí jusante em Campo Limpo Paulista), posicionado na calha do próprio Rio Jundiaí, com volume de aproximadamente 0,14 hm³ e vazão máxima liberada de 3,3 m³/s. O barramento possui altura estimada de 5,0 m e área necessária de alague de aproximadamente 6,35 hectares;
- Um reservatório de detenção (off-line) na SB05 (Córrego do Moinho), localizado em um dos afluentes do Rio Jundiaí pela margem esquerda, com volume de cerca de 0,26 hm³ e vazão máxima liberada de 5,8 m³/s.

Figura 8.3. Reservatórios propostos para a Bacia Hidrográfica do Rio Jundiaí

8.2. Programa de aumento da capacidade de condução de escoamento da calha do Rio Jundiaí

Este programa visa orientar as ações de medidas estruturais para controle de cheias na região da Bacia Hidrográfica do Rio Jundiaí, cujo objetivo é aumentar a capacidade de condução do Rio Jundiaí. Neste contexto foram indicadas obras de canalização, alteamento de bermas laterais ao canal principal, e intervenções em travessias existentes ao longo da calha do Rio Jundiaí.

O escopo deste Programa abrange a implantação de canalizações em concreto e bermas, e a adequação de travessias, todas propostas a serem executadas ao longo da calha do Rio Jundiaí. Essas modificações visam impedir que a calha do Rio Jundiaí, em áreas urbanizadas consolidadas, extravase para uma cheia com TR de 10 anos, bem como atenuar uma parcela dos impactos causados por inundações de maiores tempo de recorrência.

Assim, visando o aumento da capacidade de condução de escoamento do referido curso d'água, serão necessárias as seguintes ações (Figura 8.4 e Figura 8.5):

- Canalizações em concreto: será necessária a canalização de 15,31 km do Rio Jundiaí para compor o sistema de controle do cheias, dividida ao longo da calha que passa por três municípios: Campo Limpo Paulista (1,19 km), Várzea Paulista (3,86 km) e Jundiaí (10,26 km);
- Bermas: será necessária a construção de bermas em 10,75 km do Rio Jundiaí para também compor o sistema de controle do cheias, dividida ao longo da calha que passa por três municípios: Campo Limpo Paulista (0,17 km), Várzea Paulista (0,32 km) e Jundiaí (10,26 km);
- Adequação de travessias: essa ação se constitui no alteamento de 16 travessias, juntamente ao alargamento da seção hidráulica sob a travessia em 8 dessas, localizadas em cinco municípios: Várzea Paulista (1), Jundiaí (9), Itupeva (3), Indaiatuba (1) e Salto (2).

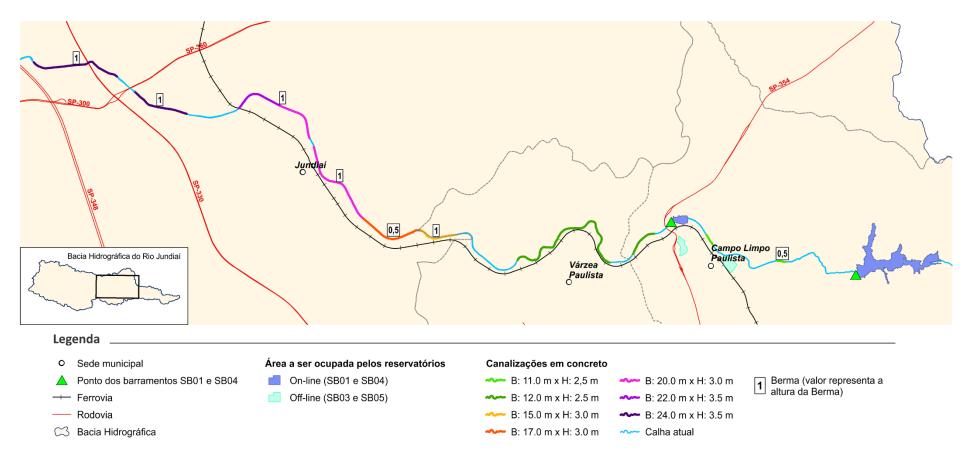


Figura 8.4. Intervenções estruturais propostas para a calha do Rio Jundiaí.

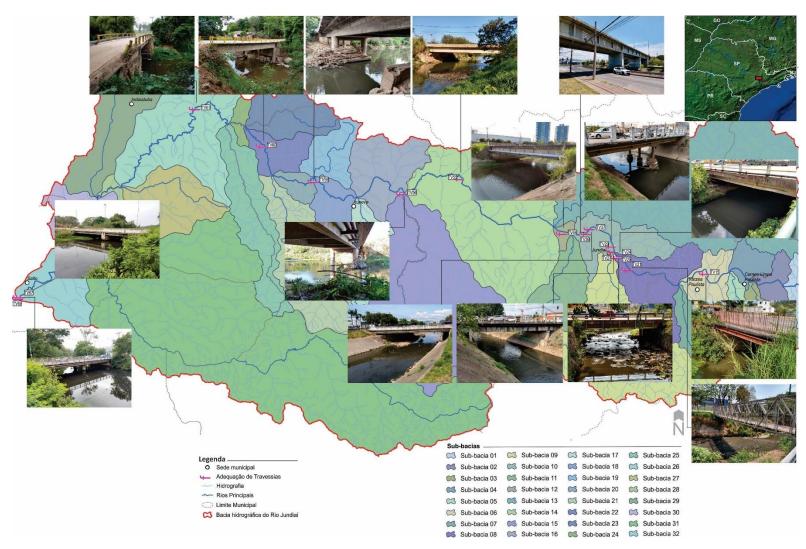
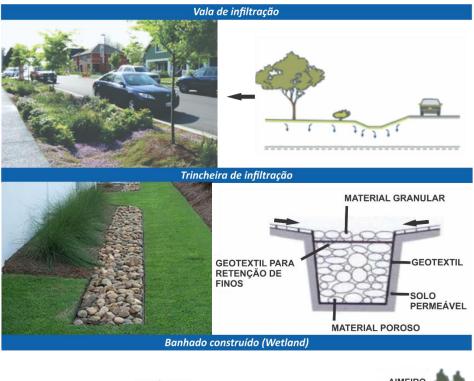


Figura 8.5. Travessias ao longo do Rio Jundiaí com intervenções estruturais sugeridas.



8.3. Programa de manejo de drenagem sustentável

Este programa visa orientar outras ações de medidas estruturais que podem ser adotadas em áreas urbanas e rurais na região da Bacia Hidrográfica do Rio Jundiaí, de forma complementar para controle do escoamento superficial, além das proposições apresentadas no presente relatório, e indicadas nos programas anteriores (itens 8.1 e 8.2). Tais medidas, bem como outras soluções de alcance mais local, são recomendadas de ser incorporadas nos planos diretores de drenagem (PDDr) dos municípios da BHJ, através dos cadernos de encargos.

Meio urbano:

- Valas de infiltração;
- Trincheiras de infiltração; e
- Banhados construídos ou wetlands.

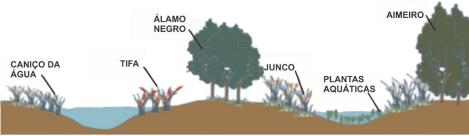


Figura 8.6. Ações de drenagem sustentável no meio urbano.

Meio rural:

- Barraginhas e adequação de estradas rurais;
- Terraceamento;
- Plantio direto e em curvas de nível;
- Cordões de vegetação e recuperação de Áreas de Preservação Permanente (APPs); e
- Consorciamento de culturas.

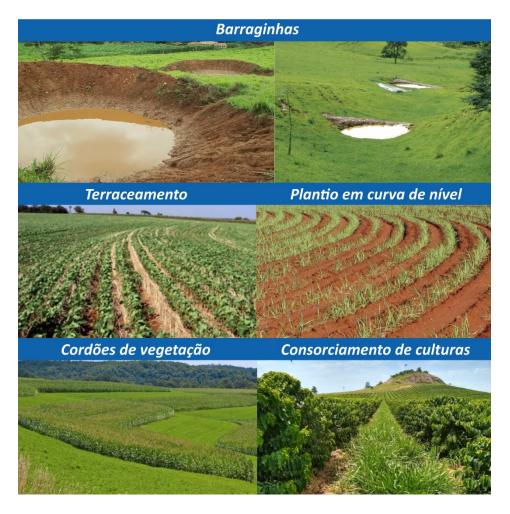


Figura 8.7. Ações de drenagem sustentável no meio rural.

8.4. Programa de monitoramento hidráulico-hidrológico, previsão, alerta e resposta

Este programa estabelece as diretrizes e ações de Monitoramento Hidráulico-Hidrológico (MHH) na Bacia Hidrográfica do Rio Jundiaí. O monitoramento hidrológico é utilizado não apenas para fins de planejamento, mas também para operacionalização de sistemas de alerta contra cheias. Assim, no contexto do PDM-BHJ, as ações de implementação e manutenção de rede de monitoramento de vazões, níveis d'água e precipitação pluviométrica têm dois objetivos: planejamento e operação de sistema de previsão, alerta e resposta.

Ações a serem desenvolvidas

- Obter dados hidrológicos para planejamento;
- Obter dados hidrológicos para previsão e alerta;
- Implantar sistema de previsão de vazões e níveis d'água e alerta; e
- Elaborar Planos de Contingência.

8.5. Programa de educação ambiental

O Programa de educação ambiental trata de temáticas estratégicas para a gestão de risco de inundações urbanas com vistas à redução de

impactos ambientais e considera, além dos aspectos técnicos e de capacitação e informação à população, os aspectos sociais e econômicos envolvidos.

A convivência harmoniosa da população com os cursos d'água é uma temática central de programas de educação ambiental. A atuação sinérgica de diferentes medidas de controle contribui para a configuração de uma solução mais sustentável e eficiente para a gestão de riscos. Estas soluções impactam em maior ou menor grau o seu entorno e a população local.

A temática de educação ambiental envolve também o fortalecimento de um setor de drenagem urbana municipal, no que tange à capacitação técnica da equipe da prefeitura. A existência ou desenvolvimento de instrumentos legais de regulação dos serviços de drenagem urbana, como a regulação do escoamento superficial de novos empreendimentos, requer a capacitação da equipe que atuará no âmbito de fiscalização e controle destas regulações.

Neste contexto, quanto a gestão de águas urbanas, a educação ambiental pode ser desenvolvida nas seguintes ações:

- Informar sobre horários de coleta de resíduos nos municípios;
- Informar sobre coleta de resíduos recicláveis nos municípios;

- Informar sobre bacias hidrográficas e cursos d'água, mesmo aqueles que se encontram fechados em galerias sob as vias de circulação;
- Capacitar técnicos municipais do setor de saneamento;
- Capacitar profissionais de engenharia, arquitetura e urbanismo.

8.6. Programa de medidas de fiscalização e controle

As medidas de controle dizem respeito aos procedimentos de licenciamento e autorização de obras de drenagem pluvial e de ocupação do solo. As medidas de fiscalização se referem à verificação, por parte do poder público, de se tais atividades estão sendo desenvolvidas no município de forma legal, de posse e respeitando as devidas licenças e autorizações.

As ações de fiscalização e controle a serem desenvolvidas na gestão de águas pluviais e inundações urbanas são:

- Regular o escoamento superficial de novos empreendimentos;
- Propor o Zoneamento da Planície de Inundação;
- Indicar a reservação de áreas ribeirinhas para detenção de cheias;

• Criar áreas de conservação e restrição de uso.

8.7. Programa de estruturação do setor de drenagem urbana

Este programa tem o caráter de fomento aos municípios para estruturação e fortalecimento do setor de drenagem urbana, ou seja, não se limita a elaboração dos Planos Diretores de Drenagem.

Conforme discutido no presente Plano Diretor de Macrodrenagem, um plano de estruturação do setor de drenagem urbana é recomendado em todos os municípios da Bacia Hidrográfica do Rio Jundiaí. Mesmo os municípios que já possuem um Plano Diretor de Desenvolvimento Urbano (PDDU) necessitam de uma estruturação institucional e de sustentabilidade econômica para a prestação do serviço público de drenagem e manejo de águas pluviais. O programa tem as seguintes componentes:

- Definir um arranjo institucional;
- Garantir a sustentabilidade financeira;
- Propor obras;
- Executar a manutenção de estruturas;
- Definir parâmetros e critérios de drenagem.

8.8. Programa de elaboração de Planos de Drenagem Municipal

Cumpridas as medidas não estruturais descritas anteriormente, o Plano Diretor de Drenagem (PDDr) do município assume o caráter de um plano de obras, onde quatro dos 11 municípios da Bacia Hidrográfica do Rio Jundiaí apresentam Planos Diretores de Drenagem: Atibaia, Itupeva, Jundiaí e Várzea Paulista. Assim, o PDDr é recomendado para os sete municípios da Bacia Hidrográfica do Rio Jundiaí que ainda não possui tal instrumento: Mairiporã, Jarinu, Campo Limpo Paulista, Indaiatuba, Salto, Itu e Cabreúva.

Para a contratação ou elaboração do PDDr, no entanto, há algumas etapas a serem cumpridas preliminarmente:

- Definição de equipe de acompanhamento e fiscalização;
- Delimitação de bacias hidrográficas do município;
- Identificação de áreas prioritárias e quantificação dos levantamentos topográficos; e
- Elaboração dos termos de referência dos levantamentos topográficos e estudos do Plano.

Tais etapas fazem parte do plano de estruturação do setor de drenagem urbana nos municípios. O plano de drenagem deverá conter, no mínimo, as seguintes informações:

- Cadastro:
- Diagnóstico;
- Alternativas; e
- Plano de ações.

É conveniente que nesta ação, com base na execução do cadastro e conhecimento do sistema de drenagem pluvial do município, sejam elaborados os programas de inspeção e manutenção de obras hidráulicas.

Pode ainda ser incluído na contratação do PDDr o Caderno de Encargos (ou Manual de Drenagem) do município, que guiará a aprovação do sistema de drenagem e manejo de águas pluviais de novos empreendimentos que, neste caso, foi incorporado ao "Plano de medidas de fiscalização e controle". As ações específicas são:

 Delimitação, quantificação de levantamentos e definição de bacias hidrográficas prioritárias para o Plano Diretor de Drenagem dos 11 municípios da BHJ: Atibaia, Cabreúva,

- Campo Limpo Paulista, Indaiatuba, Itu, Itupeva, Jarinu, Jundiaí, Mairiporã, Salto e Várzea Paulista;
- Elaboração dos Termos de Referência para elaboração (ou revisão) do Plano Diretor de Drenagem dos 11 municípios da BHJ: Atibaia, Cabreúva, Campo Limpo Paulista, Indaiatuba, Itu, Itupeva, Jarinu, Jundiaí, Mairiporã, Salto e Várzea Paulista, para os quais o presente PDM já elaborou minutas para os 11 TR citados; e
- Contratação de empresa especializada para execução dos Termos de Referência.

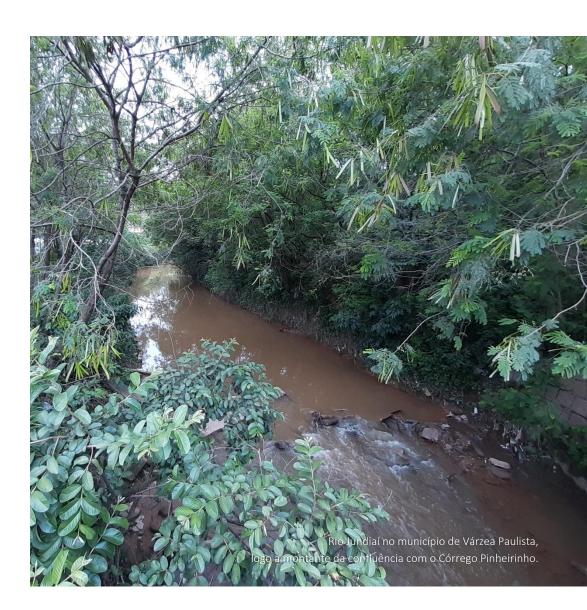


Tabela 8.1. Resumo dos Programas e Ações propostos para implementação no PDM-BHJ.

		Custo total do	Custo do programa em		Cronogr	ama de in	nplementaç	ão
Programa	Ações	programa (R\$)	relação ao valor total do Plano de Ações (%)	1 a 4 anos	5 a 8 anos	9 a 12 anos	13 a 16 anos	17 a 20 anos
	Reservatório na SB01 (Rio Jundiaí – montante)							
Construção de reservatórios de amortecimento	Reservatório na SB03 (Campo Limpo Paulista – bairro Vila Botujuru)	202 002 020 64	21 20/					
de cheias	Reservatório na SB04 (Calha Jundiaí – jusante em Campo Limpo Paulista)	392.982.029,64	31,3%					
	Reservatório na SB05 (Córrego do Moinho)							
	Canalizações em concreto							
Aumento da capacidade de condução de escoamento da calha do Rio Jundiaí	Bermas	833.520.275,04	66,5%					
	Adequação de travessias							
	Estudo de seleção de áreas e quantificação de benefícios	2.688.015,64						
	Meio urbano – Valas de infiltração		0,2%					
	Meio urbano – Trincheiras de infiltração							
	Meio urbano – Banhados construídos ou wetlands							
Manejo de drenagem sustentável	Meio rural – Barraginhas e adequação de estradas rurais	1						
	Meio rural – Terraceamento							
	Meio rural – Plantio direto e em curvas de nível							
	Meio rural – Cordões de vegetação e recuperação de APPs							
	Meio rural – Consorciamento de culturas							
	Obter dados hidrológicos para planejamento							
Monitoramento hidráulico-hidrológico, previsão,	Obter dados hidrológicos para previsão e alerta							
alerta e resposta	Implantação de sistema de previsão de vazões e níveis d'água e alerta	8.776.361,60	0,7%					
	Elaborar Planos de Contingência							
	Informar sobre horários de coleta de resíduos nos municípios							
Educação ambiental	Informar sobre coleta de resíduos recicláveis nos municípios	1.765.161,64	0,1%					
	Informar sobre bacias hidrográficas e cursos d'água							

		Custo total do	Custo do programa em	Cronograma de implementação				
Programa	Ações	programa (R\$)	relação ao valor total do Plano de Ações (%)	1 a 4 anos	5 a 8 anos	9 a 12 anos	13 a 16 anos	17 a 20 anos
	Capacitar técnicos municipais do setor de saneamento							
	Capacitar profissionais de engenharia, arquitetura e urbanismo							
	Regular o escoamento superficial de novos empreendimentos							
	Propor o Zoneamento da Planície de Inundação	2 072 770 22	0,2%					
Medidas de fiscalização e controle	Indicar a reserva de áreas ribeirinhas para detenção de cheias	3.073.778,23						
	Criar áreas de conservação e restrição de uso							
	Definir o arranjo institucional do órgão de drenagem							
	Garantir a sustentabilidade financeira do sistema							
Estruturação do Setor de Drenagem Urbana	Propor obras de drenagem e manejo de águas pluviais	3.736.410.15	0,3%					
,	Executar a manutenção das estruturas de drenagem urbana	,	,					
	Definir parâmetros e critérios para Planos e Projetos em Drenagem Urbana							
	Delimitar e obter informações de bacias hidrográficas para PDDr municipais							
Elaboração de Planos de Drenagem Municipal	Elaborar termos de referência para PDDr municipais	8.125.000,00	0,7%					
	Contratar empresa especializada para elaboração dos PDDr							
8 Programas	36 ações	1.254.667.031,94	100%		20 anos c	le horizon	te de execu	ção

¹ Custos não considerados no âmbito do PDM-BHJ, visto que as ações devem ser financiadas pela iniciativa privadas/órgãos de fomento à extensão rural, com recursos já previstos no Caderno de Conservação e Uso da Água no Meio Rural e Recuperação Florestal (PROFILL/RHAMA, 2019a).

9. DETALHAMENTO DAS AÇÕES ESTRUTURAIS

Este item apresenta o conjunto de ações estruturais sendo:

- Conjunto de Ações I: sobre os reservatórios de amortecimento recomendados na BHJ;
- Conjunto de Ações II: as intervenções propostas na calha do Rio Jundiaí, sendo elas canalizações em concreto e a execução de bermas laterais; e
- Conjunto de Ações III: sobre as adequações em travessias propostas de serem executada, para algumas destas estruturas posicionadas sobre a calha principal do Rio Jundiaí, na BHJ.

Para cada uma das intervenções dos três conjuntos de ações propostas, foram indicadas plantas com o detalhamento estrutural da obra, que estão apresentadas no Relatório Final (RT 10) deste PDM.

9.1. Conjunto de Ações I - Reservatórios

O detalhamento dos reservatórios propostos ao longo da BHJ é apresentado na Tabela 9.1, a seguir. Ao todo, é indicada a execução de quatro reservatórios de amortecimento na bacia, sendo dois deles de retenção (on-line) posicionados na calha do Rio Jundiaí, e outros dois de

detenção (off-line) em afluentes ao curso d'água principal. Todos estão localizados nos limites do município de Campo Limpo Paulista.

Tabela 9.1. Características e quantitativos dos reservatórios simulados na BHJ, para a composição da alternativa de medidas estruturais recomendada.

Sub-bacia com reservatório	Volume de amortecimento (hm³)	Área necessária (ha)	Vazão máx. liberada pela estrutura — TR 10 anos (m³/s)	Altura da estrutura (m)	Tipo de reservatório
SB01	4,50	62,90	6,1	15,0	On-line
SB04	0,14	6,35	3,3	5,0	On-line
SB03	0,31	5,00	6,4	6,0	Off-line
SB05	0,26	5,00	5,8	5,0	Off-line
Total	5,21	79,25	-	-	-

9.2. Conjunto de Ações II – Canalizações e bermas

O detalhamento da concepção das intervenções estruturais recomendadas ao longo da calha do Rio Jundiaí, classificadas a partir de sete seções-tipo, é apresentado na Tabela 9.2. A Tabela 9.3 ilustra quais das seções-tipo são propostas de serem alocadas ao longo dos três municípios onde estas medidas estão indicadas.

A partir de estudos topográficos, levantamento de características locais, posição em relação ao Rio Jundiaí, largura, declividade longitudinal e

capacidade de descarga do rio, foi concebido o projeto de aumento da seção transversal, considerando geometria trapezoidal (Tabela 9.4).

Tabela 9.2. Quantitativos das seções-tipo do canal e de bermas previamente definidos para a alternativa de medidas estruturais proposta na BHJ.

	Canal em con	В	erma		
Largura (m)	Profundidade (m)	Área (m²)	Extensão (m)	Altura (m)	Extensão (m)
11,0	2,5	27,50	445,81	0,50	172,26
12,0	2,5	30,00	4.277,91	-	-
15,0	3,0	45,00	898,62	1,00	898,62
17,0	3,0	51,00	1.582,32	0,50	1.582,32
20,0	3,0	60,00	3.354,48	1,00	3.354,48
22,0	3,5	77,00	1.208,57	1,00	1.208,57
24,0	3,5	84,00	3.541,65	1,00	3.541,65
	Total	-	15.309,36	-	10.757,90

Tabela 9.3. Quantitativo das seções-tipo do canal e bermas, por município, previamente definidos para a alternativa de medidas estruturais proposta na BHJ.

Munisipia	Canal	em concreto	Berma		
Município	Seção	Extensão (m)	Altura (m)	Extensão (m)	
Commo Limmo Doudinto	11 x 2,5	445,81	0,5	172,26	
Campo Limpo Paulista	12 x 2,5	741,07	-	-	
	12 x 2,5	3.536,84	-	-	
Várzea Paulista	15 x 3,0	239,35	1,0	239,35	
	17 x 3,0	84,21	0,5	84,21	
Jundiaí	15 x 3,0	659,27	1,0	659,27	
	17 x 3,0	1.498,10	0,5	1.498,10	

Município	Canal	em concreto	Berma		
Mullicipio	Seção	Extensão (m)	Altura (m)	Extensão (m)	
	20 x 3,0	3.354,48	1,0	3.354,48	
	22 x 3,5	1.208,57	1,0	1.208,57	
	24 x 3,5	3.541,65	1,0	3.541,65	

Tabela 9.4. Informações das seções trapezoidais para os trechos com modificações estruturais propostas na calha do Rio Jundiaí.

	Canal re	tangular	Canal trapezoidal equivalente à seção retangular					
Largura (m)	Profundidade (m)	Área da seção transversal (m²)	Raio hidráulico (m)	Base maior (m)	Base menor (m)	Profundidade (m)	Área da seção transversal (m²)	Raio hidráulico (m)
11,00	2,50	27,50	1,72	14,45	9,45	2,50	29,88	1,81
12,00	2,50	30,00	1,76	15,50	10,50	2,50	32,50	1,85
15,00	3,00	45,00	2,14	13,40	18,40	3,00	49,20	2,25
17,00	3,00	51,00	2,22	15,40	21,40	3,00	55,20	2,31
20,00	3,00	60,00	2,31	18,60	24,60	3,00	64,80	2,39
22,00	3,50	77,00	2,66	27,40	20,40	3,50	83,65	2,76
24,00	3,50	84,00	2,71	29,50	22,50	3,50	91,00	2,81

9.3. Conjunto de Ações III – Travessias

São apresentados dois tipos de intervenção, o alargamento da seção hidráulica e o alteamento das travessias. A Tabela 9.5 apresenta a listagem das travessias com necessidade de intervenções.

Tabela 9.5. Travessias com intervenções necessárias, para a alternativa de medidas estruturais proposta na BHJ.

				Interve	nção
Travessia	Município	Tipo de estrutura	Localização da travessia	Alargamento da seção hidráulica sob a travessia	Alteamento da travessia
TV15	Várzea Paulista	Ponte (concreto)	Avenida Marginal do Rio Jundiaí (ligação entre as vias das margens esquerda e direita)	Х	х
TV21	Jundiaí	Passarela	Passarela (ligação entre as vias das margens esquerda e direita da Avenida Marginal do Rio Jundiaí)	х	Х
TV24	Jundiaí	Ponte (concreto)	Avenida Antônio Frederico Ozanan (ligação entre as vias das margens esquerda e direita)	Х	х
TV25	Jundiaí	Ponte (concreto)	Avenida Antônio Frederico Ozanan (ligação entre as vias das margens esquerda e direita)	х	х
TV27	Jundiaí	Ponte (concreto)	Avenida São João Batista (ligação entre as vias das margens esquerda e direita da Avenida Antônio Frederico Ozanan)	х	х
TV29	Jundiaí	Ponte (concreto)	Rua Castro Alves (ligação entre as vias das margens esquerda e direita da Avenida Antônio Frederico Ozanan)	х	х
TV37	Jundiaí	Ponte (concreto)	Rua Tiradentes (ligação entre as vias das margens esquerda e direita da Avenida Antônio Frederico Ozanan)	х	х
TV39	Jundiaí	Linha férrea	Linha férrea (ligação entre as vias das margens esquerda e direita da Avenida Antônio Frederico Ozanan)	х	х
TV44	Jundiaí	Ponte (concreto)	Ligação entre a Avenida Antônio Frederico Ozanan e a Rua João Castiglioni de Oliveira		х
TV55	Jundiaí	Ponte (concreto)	Avenida Daniel Pelizzari (travessia no Rio Jundiaí)		Х
TV56	Itupeva	Ponte (concreto)	Rodovia Akzo Nobel (travessia no Rio Jundiaí)		х
TV59	Itupeva	Ponte (concreto)	Estrada Municipal IVA 185 (travessia no Rio Jundiaí)		Х
TV60	Itupeva	Ponte (concreto)	Travessia no Rio Jundiaí, próximo à Via Pascoal Vicentini (margem esquerda do Rio)		х
TV61	Indaiatuba	Ponte (concreto)	Estrada da Ecologia (travessia no Rio Jundiaí)		х
TV67	Salto	Ponte (concreto)	Avenida Marechal Rondon (travessia no Rio Jundiaí)		х
TV68	Salto	Ponte (concreto)	Avenida Vicente Schivitaro (travessia no Rio Jundiaí, próximo a foz)		х
		Total		8	16

9.4. Cronograma físico-financeiro do Conjunto de Ações propostas

Os custos estimados para a execução do "Programa para construção de reservatórios de amortecimento de cheias" foram estimados na ordem de R\$ 393 milhões. Tais custos estão distribuídos, por obra e tipo de intervenção, conforme Tabela 9.6 e Tabela 9.7.

Tabela 9.6. Custos (totais e por obra) estimados para a execução das obras de construção de reservatórios de amortecimento de cheias na BHJ.

Reservatórios	Custo com desapropriação (R\$)	Custo em obras, incluindo projeto e licenciamento (R\$)	Custo total (R\$)
SB01	28.440.000,00	322.061.870,01	350.501.870,01
SB03	3.600.000,00	14.325.709,71	17.925.709,71
SB04	2.916.000,00	6.155.117,36	9.071.117,36
SB05	3.600.000,00	11.883.332,56	15.483.332,56
Total	38.556.000,00	354.426.029,64	392.982.029,64

Tabela 9.7. Cronograma físico-financeiro proposto para a execução das obras de construção de reservatórios de amortecimento de cheias na BHJ.

Reservatórios	Etapa	1 a 4 anos	5 a 8 anos	9 a 12 anos	13 a 16 anos	17 a 20 anos
SB01	Projeto	9.661.856,10				
	Licenciamento		6.441.237,40			
	Desapropriação			28.440.000,00		
	Obras			305.958.776,51		
SB03	Projeto	429.771,29				
	Licenciamento	286.514,19				
	Desapropriação		3.600.000,00			
	Obras			13.609.424,22		
SB04	Projeto	184.653,52				
	Licenciamento		123.102,35			
	Desapropriação		2.916.000,00			
	Obras		5.847.361,49			
SB05	Projeto	356.499,98				
	Licenciamento	237.666,65				
	Desapropriação		3.600.000,00			
	Obras		11.289.165,93			

Os custos totais para implementação das ações do "Programa de aumento da capacidade de condução de escoamento da calha do Rio Jundial" são da ordem de aproximadamente R\$ 833 milhões, sendo destes: R\$ 752 milhões destinados para obras de modificação do canal – canalização (89% do total) e bermas (1% do total) – e R\$ 81 milhões (10% do total) para a adequação de travessias, conforme Tabela 9.8 e Tabela 9.9.

Tabela 9.8. Custos (totais e por obra) estimados para a execução das obras de modificação da calha ao longo do Rio Jundiaí.

Município	Custo em obras, incluindo projeto e licenciamento (R\$)						
	Canalização	Bermas	Travessias	Total			
Campo Limpo Paulista	34.394.754,72	59.069,83	-	34.453.824,55			
Várzea Paulista	118.884.664,87	228.809,54	1.320.181,36	120.433.655,77			
Jundiaí	588.511.690,99	9.963.822,65	62.662.057,30	661.137.570,94			
Itupeva	-	-	8.398.649,70	8.398.649,70			
Indaiatuba	-	-	552.573,30	552.573,30			
Salto	-	-	8.544.000,78	8.544.000,78			
Total	741.791.110,58	10.251.702,02	81.477.462,44	833.520.275,04			

Tabela 9.9. Cronograma físico-financeiro proposto para a execução das obras de modificação da calha ao longo do Rio Jundiaí.

Modificações no canal	Etapa	1 a 4 anos	5 a 8 anos	9 a 12 anos	13 a 16 anos	17 a 20 anos
	Projeto	22.253.733,32				
	Licenciamento	14.835.822,21				
Canalizações em concreto	Obras (Jundiaí)		279.543.053,22	279.543.053,22		
	Obras (Várzea Paulista)			112.940.431,63		
	Obras (Campo Limpo Paulista)			32.675.016,98		
	Projeto	307.551,06				
	Licenciamento	205.034,04				
Bermas	Obras (Jundiaí)		4.732.815,76	4.732.815,76		
	Obras (Várzea Paulista)			217.369,06		
	Obras (Campo Limpo Paulista)			56.116,34		
	Projeto		2.444.323,87			
Adequação de travessias	Licenciamento		1.629.549,25			
	Obras			77.403.589,32		

10. RESULTADOS DAS MEDIDAS ESTRUTURAIS RECOMENDADAS

Este item apresenta a mancha de inundação para a Bacia Hidrográfica do Rio Jundiaí, considerando a implantação de todas as obras detalhadas no capítulo 9. Tais informações são resultado da simulação realizada com o software HEC-RAS na BHJ, considerando as vazões do cenário de Prognóstico apresentadas no capítulo 7.

O produto dos esforços supracitados foram as manchas de inundação obtidas para a calha do Rio Jundiaí, considerando o cenário de ocupação futura, que estão apresentadas agrupadas por tempo de retorno (2 anos, 5 anos, 10 anos, 25 anos, 50 anos e 100 anos) no Relatório Final (RT 10) deste PDM.

Considerando o quantitativo das áreas atingidas pela mancha de inundação, para o cenário atual (Diagnóstico) e o cenário proposto (com a

execução das medidas estruturais), percebe-se uma redução das áreas urbanas atingidas na BHJ de até 75%, para o tempo de retorno de 10 anos. Também para o tempo de recorrência de 10 anos, avaliando-se os municípios presentes na calha do Rio Jundiaí, percebe-se uma redução de áreas na classe de uso do solo *Urbano* de 87% em Campo Limpo Paulista, 92% em Várzea Paulista, 85% em Jundiaí, 55% em Itupeva, 61% em Indaiatuba, e 55% em Salto.

A Figura 1.1, a seguir, apresenta da mancha de inundação para a Bacia Hidrográfica do Rio Jundiaí, <u>considerando a execução de todas as medidas</u> estruturais propostas, para um evento com tempo de retorno de 10 anos.



Figura 1.1. Mancha de inundação considerando a execução das intervenções estruturais propostas para a BHJ para o Tempo de Retorno de 10 anos.

11. CONSIDERAÇÕES FINAIS

Este documento apresentou o Relatório Síntese do Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí. Nele, primeiramente, foi apresentada uma caracterização da área de estudo, contemplando a divisão da BHJ em sub-bacias considerada para o desenvolvimento do estudo, assim como os municípios inseridos em sua área e características gerais do Rio Jundiaí.

Os levantamentos de campo, que culminaram na obtenção de seções topobatimétricas transversais e no cadastramento de estruturas da calha também foram apresentados, bem como as visitas aos municípios para obtenção de informações relativas à macrodrenagem da bacia.

Com base nas informações supracitadas e na análise de dados pluviométricos e fluviométricos, foi possível realizar o diagnóstico da situação atual da BHJ, que, entre outras informações, culminou com a apresentação das manchas de inundação para a área, assim como uma avaliação integrada da condição atual da bacia. Posteriormente, o prognóstico também apresentou essas informações obtidas, considerando um horizonte de temporal de 20 anos.

Assim, foi elaborado o plano de ações do PDM-BHJ. Nele foram apresentados oito programas, subdivididos em dois eixos de estruturação: três de medidas estruturais, e cinco de medidas não estruturais.

O primeiro programa de medidas estruturais propõe a construção de quatro reservatórios de amortecimento de cheias, sendo dois de retenção ao longo da calha do Rio Jundiaí, e dois de detenção em seus afluentes.

O segundo programa, de aumento da capacidade de condução de escoamento da calha do Rio Jundiaí, sugere a execução de 15,3 km de canalizações em concreto, 10,7 km de bermas ao longo do canal e a adequação (alargamento e/ou alteamento) de 16 travessias.

Por fim, o terceiro programa de manejo de drenagem sustentável indica ações pontuais a serem adotadas para controle do escoamento superficial, como: valas, trincheiras de infiltração e banhados construídos (meio urbano); e barraginhas, terraceamento e plantio direto (meio rural).

Os outros cinco (05) programas de medidas não estruturais propostos envolvem o monitoramento hidráulico-hidrológico da bacia, educação ambiental, adoção de medidas de fiscalização e controle, estruturação do

Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí (PDM-BHJ)

setor de drenagem urbana dos municípios e, também, a elaboração dos Planos de Drenagem Municipal.

Todas as ações estruturais supracitadas foram indicadas em planta, assim como apresentado cronograma físico-financeiro do conjunto destas medidas propostas. Além disso, foi apresentada a mancha de inundação resultante da simulação hidrodinâmica considerando a implantação das estruturas recomendadas na BHJ.

Desta forma, o Plano Diretor de Macrodrenagem da Bacia Hidrográfica do Rio Jundiaí cumpre todos os objetivos previstos com sua elaboração, sendo posteriormente integrado ao Plano das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí 2020-2035, como um de seus Cadernos Temáticos.

Informações e Contatos

Fundação Agência das Bacias PCJ

elaine.campos@agencia.baciaspcj.org.br

agencia.baciaspcj.org.br

agenciapcj

Profill Engenharia e Ambiente S.A.

